The Meson Manual

Jussi Pakkanen

October 26, 2020



©2020 Jussi Pakkanen

The sample code in this book is provided for instructional purposes only. It has been
tested with great care but it is not guaranteed to be free of errors or to work for any
particular purpose.

Typeset by the author in ITEX [11]. But given that you are the sort of person who
reads colophons you probably knew that already.

3™ edition.
ISBN: 978-952-94-2892-2
Publisher: Diffraction Labs

Meson is a registered trademark of Jussi Pakkanen. All other trademarks are the
property of their respective owners, and they are used only in an editorial fashion,
with no intention of infringement.



Preface

When you spend a long time working on a book, deep, fundamental questions on
the task start bubbling in to your mind. For this book some of these questions
included ggggnngh will this task never end, maybe I should vacuum my apartment
one more time and what was the first ever build system in the world. For the
benefit of the reader we are going to ignore the first two and instead focus on
the last one.

The obvious follow up question is what is a build system. If we go by modern
nomenclature, then a build system is a tool whose job is to transfer source
code from the user to the compilation process. This definition implies that the
first build system was not software but instead a physical object, namely the
cardboard box that operators used to carry punch cards from the keypunch
station to the punch card reader. Thus we find that build systems are one of
the oldest pieces of software development.

Given how fundamental a build system is for programming, it is quite as-
tounding how little they have changed over the years. Let’s take, for example,
the time period between the years 1978 and 2000. Computers got thousands of
times faster, many hardware companies, platforms and toolchains died, new one
arose, flourished and then died again. Yet a software developer from the late 70s
could feel quite at home, because most projects were built with Makefiles and
shell scripts.

In the new millennium things started to change. Projects got bigger and peo-
ple started requiring more things from their build systems, such as dependency
management, unit testing and so on. Implementing all of this with Makefiles
got harder and harder and eventually new solutions with wholly different ap-
proaches appeared. One of these was Meson, which was started just before
Christmas 2012. There were two main reasons for its creation. The first one was
that I was completely fed up with fixing the same things over and over again in
other peoples’ build definitions. The second was that I had not done a compiler
course so I wanted to learn how to write a parser and interpreter for my own
language.

iii



That was the easy part.

The really hard part was convincing other people to use Meson. Here we
finally discover that open source projects are not so much about the code, but
about the people working on it. Over the years we have had hundreds, possibly
even thousands of contributors ranging from code submitters to bug reporters,
documentation writers and just plain old advocates. I would love to thank each
and every one of you personally, but unfortunately there is not enough space
here. I dedicate this book to all of you.

For their help in making this book, I'd like to thank the following people:
Jukka Laurila, Juhani Simola, Tim Miiller, Nirbheek Chauhan, Aleksandr Kolt-
soff. Their comments on earlier versions of this manuscript improved the end
result immensely. However, as an old Finnish saying goes, one fool can create
mistakes faster than ten smart people can fix, there are probably still some er-
rors in the text. If you find any, please let me know via email so they can be
fixed in the next edition.

Go forth and build!

Jussi Pakkanen
jpakkane@gmail.com
Espoo, Finland
January 2020

Preface to the 2nd edition

Thanks to Will Thompson, Tom-Robin Teschner and Will Wray for reporting
errors in the first version of the book.

Preface to the 3rd edition

Thanks to Zlatko Karakas for reporting errors in the second edition.

iv



Contents

Preface iii

Conventions used in this book xiii

I The user manual 1
1 Getting started 3
1.1 Obtaining Meson . . . . . . . .. . .. 3
1.2 Creating the sample project . . . . . ... .. ... ... ... 5
1.3 Building from the command line . . . . .. .. ... ... ... 6
1.4 Building with the Visual Studio IDE . . . . . ... ... ... 7
2 How compilation works 9
2.1 Basic term definitions . . . . . ... o000 9
2.2 Building the Hello World application manually . . . . . . . .. 11
2.3 Basic symbol resolution . . . . .. ... Lo 12
24 Static linking . . . . . . ... L oL 13
2.5 Shared linking . . . . . .. ... .o o 15
2.6 Linking multiple libraries . . . . . . . ... ... ... ... .. 17
2.7 Which is better, shared or static linking? . . . ... ... ... 19
2.8 Dynamic linker and symbol resolution . . . . . . . ... .. .. 19
3 Meson syntax 23
3.1 Original design principles . . . . . . . .. . ... ... ... .. 24
3.2 Concrete design decisions . . . . . . . . ... ... .. ... .. 25
3.3 Elementary types . . . . . .. ..o oL 26
3.4 Build system phases . . . . .. ... oo 31
3.5 Program flow. . . . . ... ... oo oo 32
3.6 Object types . . . . . o . L 41



3.7 Disablers . . . . . . . .. o 42

Building blocks of a software project 45
4.1 The elementary operations . . . . . .. ... ... .. ..... 46
4.2 Advanced build cases . . . . ... ... 47
4.3 Generating data . . . . . ... ... 49
4.4 Defining the graph in Meson . . . . . . ... ... ... .... 49
4.5 Splitting the project to multiple directories . . . . . . . . . .. 50
4.6 Target properties . . . . . . .. ..o 52
External dependencies 55
5.1 What is a dependency? . . . . . . .. ... ... 55
5.2 Finding and using dependencies . . . . . ... ... ... ... 56
5.3 Dependency provider backends . . . . . . .. ... ... ... 58
5.4 Executable dependencies . . . . . . ... ... oL 60
5.5 Dependencies that don’t provide any dependency files . . . . . 61
Subprojects and internal dependencies 63
6.1 Subproject basics and layout . . . . ... ... 63
6.2 Using subprojects . . . . . . .. ... oo 64
6.3 Internal dependencies . . . . . . .. . ... ... .o L. 66
6.4 Combining subprojects and internal dependencies . . . . . . . 66
6.5 Overriding executable lookup . . . . . . . ... ... ... ... 67
Configuring the project 71
7.1 Simple approaches to configuration . . .. ... .. ... ... 71
7.2 Configuration files . . . . . . .. .. .. oL oL 74
7.3 Advanced configuration options . . . . .. .. ... ... ... 75
7.4 Introspecting the system . . . . . . ... .. ... ... ... 78
7.5 Printing status messages . . . .. ... ... Lo 81
Testing 85
8.1 Definingatest . . . . . .. .. .. oo 85
8.2 Test properties . . . . . . . .. L Lo 88
8.3 Advanced testing using the test tool . . . . . . ... ... .. 93
8.4 Defining custom test setups . . . . . . .. ... ... ... .. 96
8.5 Benchmarks . . . . .. .. .. .. o 97
Installing 99
9.1 Directory layout . . . . . . .. ... Lo 99
9.2 Installing build targets . . . . .. ... .. ... ... 102
9.3 Installing other files . . . . . . .. ... . ... L. 103

vi



9.4
9.5
9.6
9.7

Running the install . . . . .. ... ... 000
Custom install tasks . . . . . . ... .. oL oL
Other things that happen during install . . . . . . ... .. ..
Accessing data files before and after install . . . . . . .. ...

10 Project options

10.1
10.2
10.3
10.4
10.5

Builtinoptions . . . . . .. ..o o
Declaring and using project options . . . . . . ... .. .. ..
Defining options . . . . . . ... o oL
Exploring and setting option values . . . . . . ... ... ...
Sharing options between projects . . . . . ... ... ... ..

11 Custom build steps

11.1
11.2
11.3
11.4
11.5
11.6

Generating data files . . . .. ... o000
Dependency files . . . . . . ... oL oL
Special strings in command arguments . . . . . ... ... ..
Generating source code . . . . . .. L. Lo
Generating source and headers . . . . . .. ... ... ... ..
Using generators . . . . . . . . .. ..o

12 Cross compilation

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9

A word about nomenclature . . . ... ... ...
A practical example . . . . . ...
Other naming setups . . . . . . . .. ... oL
Cross compilation with Meson . . . . . . ... ... ... ...
Crossfilelookup . . . . . ... ... ..o
Multiple cross files . . . . . . .. ... ... .. ... ...
Constants in cross files . . . . .. ... ... ... ...
Native files . . . . . . . . . . . . ..
Running tests when cross compiling . . . . .. ... ... ...

12.10 Cross compilation and code generators . . . . ... ... ...

12.11 Firmware upload targets . . . . . . ... .. ... ... ....

13 The Wrap dependency download mechanism

13.1
13.2
13.3
13.4

The basic design . . . . . . ... ... L oL
Downloading revision control checkouts . . . . ... ... ...
Downloading a release archive . . . . . ... ... ... ....
Using the WrapDB . . . . .. ... ... 0oL

vii

111
111
112
112
114
116

119
119
121
122
123
124
127

131
132
132
135
135
137
138
138
139
139
141
142



14 Converting an existing project to Meson

14.1
14.2
14.3
14.4

Why change build systems? Is it even worth it? . . . . . . ..
Making sense of an existing build system . . . . ... ... ..
Build tasks ordered by difficulty . . . ... ... ... ... ..

Conversions involving an entire team . . . . . . .. ... ...

15 A library sample project

15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8

Design requirements . . . . . . ... .. oL
The external APT . . . ... .. ... .. ... .........
Precompiled headers . . . . .. ... ... ... ... ...,
The C<«» C++bridge . . . . . . . . . . .. .. .. . ... ....
Tests . . . . o e
Project layout . . . . .. ... oL
Creating releases . . . . . . . ... .. ... ... .
Exercises for thereader . . . . . . ... .. ... .. ......

16 Practical tips for real world projects

16.1
16.2
16.3
16.4
16.5

Use options rather than hardcoding compiler flags . . . . . . .
Shipping pregenerated files . . . . . . . ... ... .. ...
Do not treat files as strings . . . . .. ... ... .. ......
Running Python scripts that use extension modules . . . . . .
Move everything you can out of build files . . ... ... ...

IT The reference documentation

17 Elementary object reference

17.1
17.2
17.3
17.4
17.5
17.6

ATTAY  « o« o v e e e e e e e e e e e
boolean . . . . . . ...
dictionary . . . . . . . ..
disabler . . . . . . . ...
integer . . .. ... Lo
string . . . ...

18 Domain specific object reference

18.1
18.2
18.3
18.4
18.5
18.6
18.7

build machine . . . . . .. ... Lo
build_target . . . . . ... oo
compiler . . ...
configuration data . . . . . .. .. .. L.
custom_target . . . . . .. ..o
dependency . . . . .. ...
environment . . . . ... Lo

151
151
153
155
157

159
159
160
163
164
165
166
169
171

173
173
174
176
177
179

181

183
183
185
186
187
188
189



18.8 external library . . . . . . .. ... .. oL 215
18.9 external _program . . . . .. .. ... L. 215
18.10 generator . . . . . . ... 215
18.11 host_machine . . . . . . . ... .. ... 216
1812 meson . . . . . . . . . ... 217
18.13 python_installation . . . . . . .. ... ... oL L 222
1814 run result . . . . . . ... 224
18.15 source_ configuration . . . .. .. ... ... .. ... 225
18.16 source set . . . . . . . .. e e 225
18.17 target_machine . . . . . ... ..o 228
18.18 subproject . . . . ... 228
19 Function reference 229
19.1 add_global arguments . . . ... ... ... ... ... ... 229
19.2 add_global link arguments . . . . .. .. ... .. ...... 230
19.3 add_languages . . . . . . . . ... Lo 231
19.4 add_project_arguments . . . .. ... ... .. ... .. .. 232
19.5 add_project_link_ arguments . . .. ... ... ... ... .. 232
19.6 add_test_setup . .. .. ... ... ... ... .. 232
19.7  alias_target . . . . ... ... o 233
19.8 assert . . . . . . . ... 234
19.9 benchmark . . . . ... . .. ... ... 234
19.10 both libraries . . . . . . . . . . ... ... 235
19.11 build_target . . . . . . . . .. 235
19.12 conmfiguration _data . . . .. ... ... ... L. 238
19.13 configure_file . . . . .. ... oo 238
19.14 custom_target . . . . . .. ..o Lo 240
19.15 declare_dependency . . . . . . .. ..o 242
19.16 dependency . . . . .. ... 244
19.17 disabler . . . . . . ... 245
19.18 environment . . . . . .. ... ... ... ... 246
19.19 executable . . . . ... ... ... 246
19.20 error . . . . . ... 247
19.21 find_program . . . . . . .. ..o 247
19.22 files . . . . . .o 248
19.23 generator . . . . . . ..o o 249
19.24 get_option . . . . . ... L 250
19.25 get_wvariable . . . .. ... oo 250
19.26 import . . . .. L 251
19.27 include directories . . . . . . .. ... ... ... 251
19.28 imstall data . . . . . . .. ... ... 252
19.29 install headers . . . . .. ... ... ... ... ... ... .. 253

ix



19.30
19.31
19.32
19.33
19.34
19.35
19.36
19.37
19.38
19.39
19.40
19.41
19.42
19.43
19.44
19.45
19.46
19.47
19.48
19.49

20.1
20.2
20.3
204
20.5
20.6
20.7
20.8
20.9
20.10
20.11
20.12
20.13

install man . . . ... ...
install subdir . . . . . ... ...
is_disabler . . . . . . ..
is wvariable . . . . .. ...
Jar . oL
join_paths . . . . .. .
library . . . . . . e
MESSAZE .+« v o o e e e e e e e
run_command . . .. ...
run_target . . . ..o Lo
set_variable . . . .. ... ...
shared_library . . . . . . . ... Lo oo
shared module . . . .. . . . ... ... ...
static_library . . . . . ... ...
subdir. . . . ...
subdir done . . . . . . ...
subproject . . . . .. L
SUMMATY + « v v v v e e e e e e e e e e e e e e e
test . . . oL

dlang . . . ... e
fs (filesystem) . . . . . ...
GHOME . . . v vt i
hotdoc . . ... ...
80 . . .

python . . . . .. ..
1000

sourceset . . .. ... L e e e e e e e
windows . ... e

IIT The appendixes

A Contributing to Meson

Al
A2

Checking out the code . . . . .. ... ... ... ... ....
Creating the merge request . . . . . . . ... ... ... ...



A.3  Review and continuous integration . . . . . . . ... ... .. 294

A4  Fixing merge conflicts . . . . . . ... ... 294
A5  Documentation updates . . . . . .. ... 295
Bibliography 297
Index 299

xi






Conventions used in this book

This book has been designed to be as easy to read as possible. Unfortunately
there is no universal definition for readability. What is simple for one person
might be confusing for other people. In this chapter we describe the layout
choices taken and how they should be read. We also list out some background
requirements needed to get the most out of this book.

Programming languages

Meson supports many different programming languages. For simplicity this book
focuses only on the C and C++ programming languages. The reader is assumed
to have a basic understanding of their syntax and semantics.

Source code samples are typeset with a fixed width font. A small C++ program
looks like this.

#include<iostream>

int main(int argc, char *xargv) {
std::cout << "Hello, world\n";
return 0;

Simplified function calls
Many function calls in Meson require several arguments. Sometimes this would

produce a lot of noise that is not relevant to the issue being discussed. In these
cases we use the following syntax:

xiii



some_function(...
important_kwarg: 'value')

We use ... as a shorthand to hide all irrelevant arguments. The only thing
that matters is the important_kwarg argument and its value.

Terminal output

At several points we need to examine the output of programs. Text written to
a terminal is laid out like this:

$ 1s -lah

drwxrwxr-x 2 jpakkane jpakkane : getstarted
drwxrwxr-x 2 jpakkane jpakkane : howtouse
drwxrwxr-x 2 jpakkane jpakkane : installing
“IW-IW-Ir—-— jpakkane jpakkane : book.aux

“IW-IW-Ir-- jpakkane jpakkane : book.log
-rw-rw-r—— 1 jpakkane jpakkane : book.pdf
-rw-rw-r—— 1 jpakkane jpakkane : book.tex
-rw-rw-r—— 1 jpakkane jpakkane : book.toc
—“ITWXIWXIr—-X jpakkane jpakkane : compile.sh
“IW-IrW-Ir—-— jpakkane jpakkane : missfont.log

This sample demonstrates the two different parts of terminal text: commands
written by the user and the output printed by programs. In the example above
the first line is written by the user. These lines are printed in a slanted font and
they begin with a dollar sign representing the command prompt (the $ sign is
not part of the command and should not be typed by the user). Program output
is written in the a normal upright font.

Many Meson commands and output files contain file system paths. To im-
prove readability these have been preprocessed so that path segments that point
to a project’s source and build directories have been replaced with <<sourceroot>>
and <<buildroot>>, respectively. This syntax is used for hiding other such un-
informative things, such as download urls and hash codes.

The output of commands has been preserved as much as possible. There
are cases where this is not possible, usually due to output that is too wide to
fit on a page. In these cases the text has been reformatted for a better visual
appearance.

xiv



Operating systems

This book is mostly written from an command line usage perspective and as-
sumes the reader to have basic fluency in using the Unix shell. Meson can be
used directly from an IDE which hides all (or most) command invocations from
the user. However since each IDE is slightly different it would be counterpro-
ductive to try to explain all of them in detail. Due to this we stick with the
command line and point out IDE usage information only when necessary.

The samples also assume a Unix-like file system layout. For example the
directory used for temporary files is /tmp and files are installed according to
the Unix file system hierarchy to paths such as /usr/bin and /usr/include.
People using operating systems with different file layouts need to mentally map
these paths to the conventions of their chosen operating system.

Meson version

This book describes Meson version 0.55.0, which was released on the 12th of
July, 2020.

Meson has had features in earlier releases that have been either deprecated
or removed altogether. Those are not discussed as projects using those features
should be updated to use new functionality. Documentation of these features
can be found on the Meson project’s web site for those who need them.

XV






Part I:

The user manual






Chapter 1
Getting started

Compiling source code to programs can be quite difficult and a lot of work. But
it does not need to be. Starting a project with Meson can be easy and even
fun. We shall examine this by starting with a computer that has nothing but
a compiler and going through all the steps needed to end up with a fully built
program.

1.1 Obtaining Meson

The first step in using any piece of software is to obtain and install it. This
can be done in many ways depending on your operating system and personal
platform requirements.

1.1.1 System package manager

The simplest way of obtaining any software is to use the operating system’s
package manager, if one is available. This way has the least amount of hassle,
and the system packagers have done the hard work of ensuring that it works
with other packages provided by the system. For a build system this is especially
important as it has to cooperate with many different low level programs. The
installation requires typing only one command to a terminal.

$ sudo apt install meson
Reading package lists... Done
Building dependency tree

Reading state information... Done
The following NEW packages will be installed:
meson




1 GETTING STARTED

0 upgraded, 1 newly installed, O to remove and O not upgraded.
Need to get 245 kB of archives.
After this operation,
1 544 kB of additional disk space will be used.
Get:1 http://fi.archive.ubuntu.com/ubuntu cosmic/universe
amd64 meson all 0.47.2-1ubuntu2 [245 kB]
Fetched 245 kB in Os (1 644 kB/s)

Selecting previously unselected package meson.

(Reading database ... 372710 files and directories installed.)
Preparing to unpack .../meson_0.47.2-1ubuntu2_all.deb ...
Unpacking meson (0.47.2-1lubuntu?2)

Setting up meson (0.47.2-1lubuntu2)

Processing triggers for man-db (2.8.4-2)

This example shows how to install Meson on an Ubuntu machine, but the
same command works on all operating systems that derive from Debian. Other
distros have different commands for installing system packages. See your distro’s
documentation for installation information.

1.1.2  Python's Pip tool

Sometimes system packages can not be used. Either because the current plat-
form does not have a system package manager or because the version provided
by the system is too old. In these cases a different approach is needed. As Meson
is implemented in Python, it is also available through Python’s Package Index.
It can be installed using the pip tool, which is Python’s own package manager.

$ pip3 install meson
Collecting meson
Downloading <<download url>>/meson-0.50.0.tar.gz (1.4MB)
100% | | 1.4MB 1.3MB/s
Building wheels for collected packages: meson

Running setup.py bdist_wheel for meson ... done
Stored in directory: <<pip dir>>
Successfully built meson
Installing collected packages: meson
Successfully installed meson-0.50.0

The command executed here is pip3, but it might have a different name on
other platforms. Note that you should not use the command pip as it executes
Pip for Python version 2 and Meson only supports Python version 3.



1.2 CREATING THE SAMPLE PROJECT

Pip might install its files to locations that are not in the system path,
so they can not be run directly from the shell. A typical install location is
~/.local/bin/meson. If this is the case for you, then you need to add the
directory holding the Meson binary to the PATH environment variable before it
can be used.

1.1.3 Windows binary packages

The Windows operating system does not ship Python by default. You can install
it in the usual way and then install Meson via Pip as described in the previous
chapter. This is not necessary, though, since the Meson project also provides
fully standalone installer packages. These are in the Windows standard MSI
format. Installing them is easy, after downloading the package, just double
click on it to start the installer. The default options should result in a working
installation.

1.2 Creating the sample project

First, let’s run Meson with the --help command line switch to make sure that
Meson has been installed properly and our environment is working.

$ meson --help
usage: meson [-h]
setup,configure,install,introspect,init,test,wrap,help ...

optional arguments:
-h, --help show this help message and exit

Commands :
If no command is specified it defaults to setup command.

setup,configure,install,introspect,init,test,wrap,help
setup Configure the project
configure Change project options
install Install the project
introspect Introspect project
init Create a new project
test Run tests
wrap Wrap tools
help Print help of a subcommand




1 GETTING STARTED

#include<iostream>

int main(int argc, char *xargv) {
std::cout << "Hello, world!\n";
return O;

Figure 1.1: A C++ version of the well known Hello World application.

To get started we’ll create a file called hello.cpp, which contains the stan-
dard hello world application as shown in Figure 1.1.

Then we create a Meson build definition file called meson.build with the
following contents.

project('simple demo', 'cpp')
executable('hello', 'hello.cpp')

This is all we need to build our application, next we need to configure a build
directory and then start the build.

1.3 Building from the command line

In the first step we invoke Meson and tell it what directory to use as the build
directory. It will then set up everything needed to start the build.

$ meson build

The Meson build system

Version: 0.48.0

Source dir: /home/jpakkane/mesonbook/tmp/hello
Build dir: /home/jpakkane/mesonbook/tmp/hello/build
Build type: native build

Project name: simple demo

Project version: undefined
Native C++ compiler: c++ (gcc 7.3.0
"c++ (Ubuntu 7.3.0-27ubuntul~18.04) 7.3.0")
Build machine cpu family: x86_64
Build machine cpu: x86_64
Build targets in project: 1
Found ninja-1.8.2 at /usr/bin/ninja




1.4 BUILDING WITH THE VISUAL STUDIO IDE

The project is compiled by invoking the Ninja [13] build tool.

$ ninja -C build

ninja: Entering directory “build'
[2/2] Linking target hello.

We used the -C command line switch to Ninja to tell it where the build
directory is. An alternative approach is to first go in the build directory with
cd build and then invoking Ninja without any command line arguments.

Now the project has been built and we can run the resulting binary directly.

$ build/hello
Hello, world!

1.4 Building with the Visual Studio IDE

Visual Studio [14] behaves in a different way than most compiler toochains,
especially ones on Unix type platforms. Its compilers are not in path by default
so you can’t use them directly. The simplest way is to launch the Developer
command prompt that can be found in the Start menu under Visual Studio’s
application folder.

Once the terminal has been launched, Meson can be run in a similar way as
above.

$ meson build --backend=vs

The Meson build system

Version: 0.48.999

Source dir: C:\Users\IEUser\hello

Build dir: C:\Users\IEUser\hello\build
Build type: native build

Auto detected Visual Studio backend: vs2017
Project name: hello

Project version: undefined

Native C++ compiler: cl (msvc 19.15.26730)

Build machine cpu family: x86_64
Build machine cpu: x86_64
Build targets in project: 1

The only difference is the --backend=vs command line argument. We use it
to tell Meson that we want to generate a Visual Studio Solution. Meson defaults
to using Ninja, and latest versions of Visual Studio provide a copy if you install



1 GETTING STARTED

4 hello - Microsoft Visual Studio ¥ & | Quick Launch (Ctr+Q) Pl- B x
File Edit View Project Build Debug Team Tools Test Analyze Window Help signin [
[ -2 B9 -0 | debug -/ x4 - b Local Windows Debugger - | 57 ¥ ¥ 1 | LR
pp + Solution Explorer - X
Bl hello ~|  (Global Scope) - - SE-m-5d@| o ;-E|
1 #includeciostream> +
5 ~ [ 5eerch Solution Explorer (Ctrl+") P~
3 =lint main{int argc, char **argv) { [l Solution 'hello’ (4 projects)
4 std:icout << "Helle, world!\n"; 4 [G] hello
N return 8 b vm References
° ¥ b 1 Edemal Dependencies
5 b *+ hello.cpp
b [l REGEN
b [l RUN_INSTALL
b [l RUN_TESTS
-
Solution Explorer

100 % - p
MR | Propertics X

Output
Show output from:  Build e | & ra 5
alles]n, | o

B Microsoft Visual Studic Debug Console

Figure 1.2: Running the built hello application from the Visual Studio IDE.

certain extensions. Thus we need to have this argument to ensure that IDE
project files are generated.

Meson will generate a Visual Studio solution file in the build directory, which
is the native project format for this IDE. Figure 1.2 shows the result of open-
ing the solution in the IDE, building it and running the resulting executable.
The debug console window is opened automatically by the IDE for all console

applications so their output can be seen.



Chapter 2
How compilation works

Compiling source code into executables looks fairly simple on the surface but gets
more and more complicated the lower down the stack you go. It is a testament
to the design and hard work of toolchain developers that most developers don’t
need to worry about those issues during day to day coding.

There are (at least) two reasons for learning how the system works behind
the scenes. The first one is that learning new things is fun and interesting an
sich. The second one is that having a grasp of the underlying system and its
mechanics makes it easier to debug the issues that inevitably crop up as your
projects get larger and more complex.

This chapter aims to outline how the compilation process works starting
from a single source file and ending with running the resulting executable. The
information in this chapter is not necessary to be able to use Meson. Beginners
may skip it if they so choose, but they are advised to come back and read it
once they have more experience with the software build process.

The treatise in this book is written from the perspective of a build system.
Details of the process that are not relevant for this use have been simplified or
omitted. Entire books could (and have been) written about subcomponents of
the build process. Readers interested in going deeper are advised to look up
more detailed reference works such as chapters 41 and 42 of [10].

2.1 Basic term definitions

compile time All operations that are done before the final executable or library
is generated are said to happen during compile time. Some people use the
term informally and include linking in compile time. Others are more strict
and use the term link time to distinguish between the two.



10

2 HOW COMPILATION WORKS

run time All operations that happen once a built executable is run are said to
happen during run time (sometimes also called runtime). In this chapter
we are mostly interested in the run time behaviour of symbol resolution
via dynamic linking.

source file Source files contain the actual source code that programs are made
of. They usually have file name extensions such as .c, .java or .cpp.

header file Some languages have separate header files that contain things such
as function and variable declarations (but not their definitions). In C++
code that uses templates this gets a bit murkier. It is possible, and in fact
quite common, to have code inside header files, but for the purposes of this
chapter we can mostly ignore it.

object file An object file is the intermediate step between a source file and an
executable or library. The compiler converts one source file into one object
file, which contains machine executable binary code. An object file is not
usable on its own until it is linked to a build target.

compiler A compiler’s job is to take source files, parse their contents and gen-
erate corresponding binary code. It is also responsible for optimising the
output, printing warnings, generating debug information and sometimes
even doing static analysis on the source code.

linker The task of taking built object files and dependency libraries and as-
sembling that into a cohesive whole, usually either a shared library or an
executable, falls to the linker. Few people need to deal with the linker
directly, and on most platforms it is invoked via the compiler.

static linker A static linker is a tool that produces static libraries from object
files.

symbol Many things in binary code have names by which they can be identified.
Examples include functions and global variables. These names are called
symbols.

static library A static library is an archive file containing only object files.

shared library A shared library is a fully built piece of code that other pro-
grams can use. When a program (or library) is linked against a shared
library no code is copied. Instead the linker stores the name of the depen-
dency library in the target it is building to be used later by the dynamic
linker at runtime.

executable An executable is a program that can be run.



2.2 BUILDING THE HELLO WORLD APPLICATION MANUALLY

compilation linking

G Ems G

Figure 2.1: The compilation steps needed for a program consisting of one source
file.

dynamic linker An executable using shared libraries can not be executed di-
rectly. Some process must find the libraries it needs and map all symbols
used by the executable to their respective locations. This task is handled
by the dynamic linker. It does not come from the compiler toolchain, but
is a core component provided by the operating system.

2.2 Building the Hello World application manually

A simple way to get started is to compile a simple program manually. For this
we’ll use the helloworld application presented in Figure 1.1. As discussed above,
the build process can be split into two separate parts: the compilation step and
the linking step. The workflow is visualised in Figure 2.1. The compilation is
done by invoking the compiler.

$ c++ -c -0 hello.o hello.cpp

By default most compilers want to compile and link the entire application in
one step. We have to use the -c¢ command line argument since we only want to
compile. The output goes to the object file hello.o.

Linking is just as simple.

$ c++ -0 hello hello.o

We don’t call the linker binary (which on this platform is called 1d) but
instead use the compiler to do the linking for us. The reason for this becomes
fairly obvious if we look at the command line needed to link the program with
plain 14d.

1d -o hello \
—-dynamic-linker /1ib64/1d-1linux-x86-64.s0.2 \

/usr/lib/x86_64-linux-gnu/Scrtl.o \
/usr/1ib/x86_64-linux-gnu/crti.o \

11



12

2 HOW COMPILATION WORKS

/usr/lib/gcc/x86_64-1linux-gnu/7/crtbeginS.o \
hello.o \

-L/usr/1ib/x86_64-linux-gnu \
-L/usr/1ib/gcc/x86_64-linux-gnu/7/ \

-1stdc++ -1lgcc -1lc -lgcc_s \
/usr/lib/gcc/x86_64-1linux-gnu/7/crtendS.o \
/usr/1ib/x86_64-1linux-gnu/crtn.o

These command line arguments specify all sorts of functionality needed to
talk with the core operating system and by the C++ language runtime. Unless
you are working on the compiler toolchain or other such low level component, it
is unlikely you’ll ever need to deal with the linker manually.

The built executable can now be run.

$ ./hello
Hello, world.

2.3 Basic symbol resolution

From the developer point of view, compilation is fairly straightforward and easy
to comprehend. Source code goes in and a binary artefact comes out. Linking,
on the other hand, is a lot more vague. The most user visible operation that
happens during linking is symbol resolution. In order to understand it, we must
first examine what symbols are in the compilation context.

Symbol resolution happens at a very low level, and thus it is necessary to go
all the way down to assembly code to understand its behaviour. A simple source
file and its corresponding assembly output can be seen in Figure 2.2. Under-
standing exactly what the individual assembly instructions do is not necessary,
a rough understanding of the overall structure is sufficient.

A symbol is nothing more than a string which specifies a name of a thing in
the program. To keep things from getting too simple, not all symbols have a
name and some names do not have a corresponding symbol. The sample code
has three different named elements: the print_number and printf functions
and the number variable. The first two of these have a symbol name but the
variable name does not. This is because the linker only works with elements
that are in global scope, that is, functions and global variables and constants.
Both of these names can be found in the assembly output.

The element that does have a symbol but not a name is the character array
"Number %d\n.". This may seem surprising given that the character array is
only used inside the function just like the number variable. What happens behind
the scenes is that the compiler elevates the character array to a global constant



2.4 STATIC LINKING

#include<stdio.h> .LCO:
.string "Number %d.\n"
void print_number (int number) { print_number:
printf ("Number %d.\n", number); mov esi, edi
T X0r eax, eax
mov edi, OFFSET FLAT:.LCO
jmp printf

Figure 2.2: A simple C function (left) and the result of compiling it to x86_64
assembly (right).

and gives it a secret symbol name, which in this case is .LCO, as can be seen
at the beginning of the assembly output. Effectively it is as if the compiler had
compiled a program that looks like this:

#include<stdio.h>

/* Leading dot removed, because variable names can not
* have the character "." in them.

*/

const char LCO[] = "Number %d.\n";

void print_number (int number) {
printf (LCO, number);
}

At this point the compiler’s job is finished and the object files are handed to
the linker. Its job can be most easily understood by looking at the last line of
the assembly code which is jmp printf. This is the call to the printf function
which is part of the standard library. Sadly processors do not understand textual
labels, they can only jump to specific memory addresses. The main task of the
linker is to go through the compiled code and replace all references to symbols
with numerical addresses that point to the corresponding functions and global
variables. If all symbols used by the program are found the program can be
generated and run. In case any piece of code tries to use a symbol that the
linker can not find, the linker will abort with an error.

2.4 Static linking

Thus far we have only looked at single executables where all source code is
compiled and linked directly. In real world projects this setup is fairly rare. Most

13



14

2 HOW COMPILATION WORKS

applications use code that has been built separately. A collection of prebuilt code
is called a library. There are two different kinds of libraries, static libraries and
shared libraries and using code from these on a target is called static linking and
shared linking, respectively. We shall first look at static linking, since it is the
simpler of the two.

To demonstrate linking we are going to need two things: a library and an
executable using it. We'll create our own library called messageprinter. It
consists of one file, messageprinter.c.

#include<stdio.h>

void print_message() {
printf ("I am a library.\n");
}

The only thing this function does is print a message to the screen proving
that the function has been called. A main program using the library is equally
plain.

void print_message();

int main(int argc, char *xargv) {
print_message();
return O;

The only thing to note is that main.c manually specifies the function pro-
totype at the beginning rather than by including a header. This is merely to
simplify the code.

This is all that we need to build and run an executable using static linking.
Building the static library takes two commands.

$ cc -c -o messageprinter.o messageprinter.c

$ ar csrD libmessageprinter.a messageprinter.o

The first command is the familiar compiler invocation. The second command
is where the library gets built. It is done with the ar command, which is known
as the static linker. This is actually a misnomer, since ar does not do any linking
at all. The only thing it does is take all the specified object files and put them
together in an archive file. Its behaviour is almost identical to other archive
program such as tar and zip. Because of this the static linker is sometimes
called a static archiver. The library file name is libmessageprinter.a. The



2.5 SHARED LINKING

standard way of naming libraries is to have the 1ib prefix and .a as the file
extension. This is not mandatory, the archive can have any name, but most
tools, processes and developers expect this naming scheme so you should use it
unless there are strong reasons for doing something else.

The library can be used by adding it on the final executable’s link command
line.

$ cc -c¢ -0 main.o main.c
$ cc -o main main.o libmessageprinter.a

$ ./main
I am a library.

In addition to passing the library directly, there is an alternative syntax that
is used especially for libraries provided by the system.

$ cc -o main main.o -L. -lmessageprinter

This way of using the library requires two command line arguments. The
latter one is -lmessageprinter which tells the linker to find a library called
messageprinter, following the standard naming scheme, and link against that.
The standard naming scheme is the one mentioned above. If the library file is
not libmessageprinter.a, the linker could not find it and linking would fail.
By default the linker only does lookups in the system library directories. Since
our library is not in one of those, we need to add the current directory to the
list of lookup directories with the -L. command line argument.

The algorithm the linker uses to handle static libraries is straightforward. If
it finds that some object file contains a symbol needed by the main program,
it will copy out that object file and link all of it with the main program. The
behaviour is the same as if you had manually specified those object files to be
linked like this:

$ cc -o main main.o messageprinter.o

In this simple case the entire contents of the static library is used. But if
the library contains many object files, only the ones whose symbols are actually
needed (and their transitive dependencies) end up in the final executable. If
only a small fraction of the library’s code is needed, this can lead to noticeable
space savings in the final executable.

2.5 Shared linking

Building and using a shared library is not very different from static linking.

15



16

2 HOW COMPILATION WORKS

$ cc -o messageprinter.o -fPIC -c messageprinter.c

$ cc -o libmessageprinter.so -shared messageprinter.o

The only difference to static linking are the output filename and the two
command line arguments. The compiler argument -fPIC tells the compiler that
the object file will be used in a shared library so it must be built as position-
independent code. What this means will be explained later in this chapter.
On many platforms this argument is not needed as all code is built position-
independent by default but we use it here for portability. The linker argument
-shared tells the linker that the output file should be a shared library.

Linking the main program with the shared library is almost identical to using
a static library.

$ cc -o main main.o libmessageprinter.so

You can also use the -L. -lmessageprinter syntax, which works in the
same way. If you try to run the result, you will get a mysterious crash:

$ ./main
./main: error while loading shared libraries:

libmessageprinter.so:
cannot open shared object file: No such file or directory

This error stems from the main difference between static and shared libraries.
Shared libraries are full featured operating system components whereas static
libraries are only archives of objects. The former can be used in various ways
during runtime but the only thing you can meaningfully do to a static library is
link it to an executable or a shared library.

In static linking all object code used by the application is copied to the
target executable. In shared linking this does not happen. Instead the shared
library’s name is written in the executable’s dynamic section. It contains a list
of all external shared libraries required to run the program. No code from the
shared library is copied inside the executable. When the program is run it is
the responsibility of the operating system’s dynamic linker to find all shared
libraries needed by the program and to resolve all missing symbols. This lookup
is done every time the program is run.

Just like the static and shared linkers need to be told where to look up
libraries, the dynamic linker needs to be told where to look up shared libraries.
Due to security reasons the current directory is not in the library search path by
default'. We need to add it to the list with the LD_LIBRARY_PATH environment
variable.

1 Just like the current directory is not in PATH by default.



2.6 LINKING MULTIPLE LIBRARIES

$ LD_LIBRARY_PATH=. ./main

I am a library.

One unexplained question about this program remains about the program’s
use of printf. Since it is a symbol and all symbols need to be resolved before
a program can be run (both when shared and static linking), where does that
symbol come from? To find this out we need to look inside the produced ex-
ecutable. There are many tools available to inspect the contents of programs.
We'll use the 1dd program that lists all libraries needed by an executable.

$ LD_LIBRARY_PATH=. 1dd main
linux-vdso.so.1 (0x7f£fd3e9f7000)

libmessageprinter.so => ./libmessageprinter.so (0x7£741e7£1000)
libc.so0.6 => /1ib/x86_64-linux-gnu/libc.so0.6 (0x7£741e400000)
/1ib64/1d-1inux-x86-64.s0.2 (0x7£741ebf5000)

Even though we specified one shared library, the final executable ended up
with four of them. linux-vdso.so.1 is a performance optimisation mechanism
that makes certain Linux system calls faster. The second line contains the shared
library we just built.

The third one is 1ibc.so.6. This is where printf actually comes from. This
library is called the C runtime library and contains all functionality needed by
C programs, such as malloc for allocating memory. It also contains code needed
for process startup and teardown. Most programming languages have a similar
runtime library that they link dynamically against their programs. There are
also languages that don’t behave in this manner.

The final entry is /1ib64/1d-1inux-x86-64.s0. This is the system’s dy-
namic linker. It may seem bizarre that the dynamic linker, whose job is to find
an executable’s shared dependency libraries is itself provided as a shared library.
The answer to this chicken and egg problem is that the dynamic linker is not
a dependency library in the traditional sense, 1dd merely reports it that way.
In reality it is set up as the program’s FLF interpreter. A detailed description
of the issue is out of scope for this book, but interested readers can find more
information in the ELF reference documentation [18].

2.6 Linking multiple libraries

Linking multiple libraries is only slightly more complex than only one. Basically
the linker will proceed through the items on the link line one by one until all
linker targets have been processed. Thus far the behaviour of all operating

17



18

2 HOW COMPILATION WORKS

systems and toolchains has been almost identical, but this is where they start
to differ noticeably.

For the purposes of this discussion, let’s assume that we have a project that
consists of one main object file and two libraries called one and two. The main
object uses functionality from library one which in turn uses functionality from
library two.

2.6.1 The classical Unix linking model

The sample project would eventually be linked using the following command:

$ cc -o main main.o libone.a libtwo.a

Here we use static libraries. The way the linker goes about its job is that
it starts by taking the first argument main.o. It processes the file and makes a
list of all external symbols that it requires. Then it processes the next argument
libone.a. For each symbol in the missing symbol list it will try to see if any of
the object files inside the library provides it. If yes, it will copy the object file
out as described in section 2.4.

Once the linker has satisfied as many missing symbols as it possibly can,
the static library is discarded. Any object files that were not needed to satisfy
symbols are thrown away. After that the linker will go to the next argument
libtwo.a and repeat the process. If all symbol requirements were found, the
linking step is a success, otherwise an error is raised.

The main problem with this algorithm is that it is fragile and sometimes
confusing. It breaks if you get the order of libraries wrong. This will not link:

$ cc -0 main main.o libtwo.a libone.a

The reason is simple. When libtwo.a is being processed, none of the symbols
it provides are in the list of needed symbols. That means that everything in it
gets thrown away. When libone.a is processed those symbols are added to the
list, but they can’t be fulfilled any more because 1ibtwo.a is gone.

This was a fairly common problem back when Makefiles were written by hand.
It is very confusing to be told by the linker that your program has unresolved
symbols even though you can clearly see them on the linker command line. This
lead to lots of “cargo cult” problem solving where developers would add the same
libraries on the command line many times in the hopes that eventually it would
work.

Sometimes it is even necessary to have the same dependency library on the
command line multiple times. This happens if you have a circular dependency
between two libraries. This happens when library A requires symbols from



2.7 WHICH IS BETTER, SHARED OR STATIC LINKING?

library B and vice versa. If this ever happens the only reasonable approach is
to change the code so the circular dependency is broken. If this is not possible
for some reason, then the only workable solution is to tell the linker to first
link A, then B and then A again. Or possibly B, A, B depending on how the
calling program uses the libraries. In fact for pathological cases there may be
an arbitrary number of repetitions needed. It is left as an exercise to the reader
to work out how that might come about.

The reason for this behaviour is that linkers were originally designed and
implemented in the early 70s. At the time computers were slow and had little
memory. Keeping all symbols alive would have required too many resources, and
actively reducing the amount of data to keep in memory made sense. Then, as
it usually happens, computers got a lot faster so this limitation was no longer
an issue, but the behaviour was kept to maintain backwards compatibility.

The most widespread linker in current use that behaves like this is the GNU
bfd linker, which is the default on most Linux distributions.

2.6.2 Modern linker model

Modern linkers behave in roughly the same way as the classical Unix linker,
except that they don’t discard any libraries. This means that symbol resolu-
tion happens globally. It does not matter which order the libraries are defined,
because the linker will search for symbols in every file.

The exact order in which symbols are resolved depends on each linker. Usu-
ally developers do not have to care about it as long as no symbol is repeated.
Duplicated symbols are considered an error. Most new linkers behave in this
manner, including the Visual Studio linker, macOS linker and the lld linker
provided by the LLVM project.

2.7 Which is better, shared or static linking?

This is a common topic of, shall we say, lively debate on the Internet. Both
of these approaches have their merits and use cases. Meson does not have a
preference, instead it aims to work identically with both library types. Switching
between the two library types is simple, as the only change needed is to alter
the library target’s type.

2.8 Dynamic linker and symbol resolution

Now that we know the difference between static and shared linking we can
examine how symbol resolution works in more detail. We will remain at the

19



20

2 HOW COMPILATION WORKS

conceptual level, though. Readers interested in the actual implementation details
are instructed to look up more detailed reference works such as [5].

Resolving symbols in static linking is not particularly complicated. As was
discussed in Section 2.3 the compiler will write placeholder code for all symbols
outside the current translation unit. In addition it writes a set of relocation
records. They are merely a list of locations of said placeholders and which
symbol’s address they should be filled in with. When the final executable is
linked, the linker has all the code and thus the addresses of all symbols. It can
then overwrite the placeholders with the real addresses.

Dynamic linking is more difficult. Nothing about it is known at link time
apart from its name. We don’t know what address it will end up when the
program is run due to address layout randomisation or ASLR. This is a security
mechanism against various memory corruption vulnerabilities. Whenever a piece
of code is loaded into memory, whether it comes from an executable or a shared
library, it is placed at a random address in the process’ virtual address space.
Thus some sort of an indirection mechanism is needed to make things work.

Suppose we build an executable called proggy in the current directory and
that it uses a shared library thingy which resides in directory subdir. The
program would be built with the following command line invocation:

$ gcc -g -0 proggy main.c subdir/libthingy.so

The linker adds an entry to the executable that it requires 1ibthingy.so to
run. This can be verified with the 1dd command.

$ 1dd proggy

subdir/libthingy.so (0x00007£5bfe106000)

As can be seen, the entry also contains the subdirectory where the library
resides in. To keep things from being too simple and straightforward, this de-
pends on the compiler flags used. If the executable is linked with the alternative
link syntax like this:

$ gcc -g -0 proggyL main.c -Lsubdir -1thingy

then only the filename is written in the executable:

$ 1dd proggy

libthingy.so => not found




2.8 DYNAMIC LINKER AND SYMBOL RESOLUTION

This behaviour is confusing and is probably inherited from the 70s and can
not be changed due to backwards compatibility. The solution to this is an entry
called soname, which is a “virtual file name” that can be defined for each shared
library. There are exact rules on how sonames should be determined but Meson
will do that automatically.

When an executable that uses shared libraries is run, it is the responsibility of
the dynamic linker, sometimes also called a loader, which starts with the main
executable and the list of sonames that it requires. It will search for shared
libraries matching the sonames on the system in a platform specific way. Any
libraries required by the found shared libraries are also looked up in the same
way. If any of the libraries can not be found, then the process is not run, but
instead exits with an error.

Now the dynamic linker is almost at the same position as we were when
linking the executable statically. It has all the symbol names and knows the
corresponding runtime addresses. It could, in theory, write the actual addresses
in the code that has been loaded in memory, but it turns out that this can’t be
done. All code loaded from files is mapped to memory as read-only so the actual
code can’t be changed. This is due to performance and security reasons. Thus
an additional piece of functionality is needed.

For function calls this is done with a data structure called the procedure
linkage table or PLT.2 A slightly simplified way of looking at it is to consider it
as a table of function pointers, one for each symbol needed. Once the table is
filled, the code can call any function it needs to execute. Yet, the tables are not
filled yet.

The ELF file format used by most unixes is very powerful and flexible and
supports many different ways of loading, using and interposing symbols. We
shall not look at them in detail, but what is important for this discussion is that
symbol loading is done lazily. That is, the actual location of any symbol is only
determined when someone actually calls it. This also improves program startup
times, since it is not uncommon for programs to only use a subset of all symbols
at runtime. Symbol lookup takes time, and resolving all symbols up front would
be slow. An outline of the lookup process can be seen in Figure 2.3.

Symbol resolution starts by the executable calling a function that resides in
some shared library. This is implemented by calling the function pointer in the
PLT that corresponds to the desired function. This reduces to calling a function
pointer in the PLT (which is an array) with an offset. All of this information
was available when the executable was built, so this can be done directly.

As discussed earlier, the PLT does not contain function pointers to the ac-
tual code. Instead all pointers in the PLT have been set to point to a symbol

2Global variables are looked up in an analogous fashion using a table called global offset
table or GOT.

21



22

2 HOW COMPILATION WORKS

4 program call function
,"l PLT jump to loader
return | *
to caller look up symbol
dynamic loader patch PLT
\ + call symbol
‘| shared library perform action

Figure 2.3: How the dynamic linker looks up symbols.

resolution function inside the dynamic loader and to pass it an argument spec-
ifying which function in the table initiated the call. The dynamic loader now
knows which function was called and can look up its actual runtime address. It
writes this address to the PLT entry and then jumps to that function. From the
outside it looks as if the program had called the correct function in the shared
library directly.

When the function is called a second time, the entry in the PLT already
points to the correct location. The expensive resolution operation is thus done
only once and only for those symbols that have actually been used.



Chapter 3
Meson syntax

The previous chapters should provide a rough understanding of using Meson and
what is required of a build system. Armed with this information we can now
dive into the core of Meson: its build definition language.

Traditionally build system definition languages have been fairly low level. It
was common to have to type compiler flags, command lines and the like by hand.
A significant fraction of build systems still in use today provide only a single
data type: a string of characters. Meson works at a higher level of abstraction
to simplify the task of writing build definitions but without losing expressive
power. This is achieved by providing a richer set of general and domain specific
types.

Many programming languages such as C++ are defined in terms of an abstract
machine. Rather than try to add every computer architecture’s idiosyncrasies in
the definition, the language is instead defined in terms of an idealised computer.
It is the task of the compiler to take a program written for this hypothetical
computer and convert it to run on a real piece of hardware. The output (and
side effects desired by the author) of the actual program must be the same as for
the idealised version. This makes the programmer’s job a lot simpler, especially
for projects that need to work on multiple platforms. The downside is that this
makes writing the compiler a harder task. The same principles apply for Meson.

The end user’s task is to write a build definition of their project using the
high level constructs provided by the build system. These include libraries,
executables, external dependencies, source files and other types. Meson will then
take this definition, inspect it, validate it and eventually convert it to individual
elementary actions such as compiler and linker invocations.

Most of the time this high level of abstraction is sufficient. There are many
cases, though, where it is necessary to dive deeper and deal with the underlying
details, such as specifying specific compiler flags. Meson aims to provide a good
user experience for both these cases. In fact this duality is the root cause of



24

3 MESON SYNTAX

most of Meson’s internal implementation complexity. The payoff for this work
is that from the end user point of view Meson stays close to the golden rule of
design:

Simple things should be simple.
Hard things should be possible.

3.1 Original design principles

Build systems have not traditionally been known for their nice and readable syn-
tax. Meson was originally designed from the ground up with usability in mind.
Build systems are quite different from other development tools such as editors
and debuggers, in that when you are interacting with the build system, you are
not productive. That is, every moment spent dealing with build definitions is,
strictly speaking, time lost. A driving force in build system design is to minimize
the time users are dealing with it.

The first, and perhaps the most important, design principle is that build
definitions should be readable. More specifically, when a user reads just one build
definition file in a large project, they should obtain a fairly good understanding
of what the definition does. There should not be “spooky action at a distance”
where setting a variable in a random other build definition file unexpectedly
alters the behaviour of seemingly unrelated build steps.

Many build systems were born in or have a legacy from the 70s. At the time
terseness and use of “magic” characters was common and considered good prac-
tice. The downside is that using them means memorising what cryptic character
combinations such as $< and ?: mean, and how $x* differs from $%!. Since the
list of special characters is limited, most Unix programs repurpose them to their
own use. Many character combinations behave slightly differently in different
tools, so the end user has to remember what a given character combination does
in the specific program they are using. Because of these problems a general
trend for designing text based formats has shifted to use plain English keywords
instead. This makes code easier to read at the cost of taking more keystrokes to
write.

Using plain words in build definitions is not without its problems, either.
The obvious pothole is to make things too verbose. This makes reading and
understanding build definitions obtuse and tiring. Meson aims to strike a balance
between these two extremes by using plain text keywords as much as possible
while using special characters sparingly. In practice this mostly means using

1For plain Make these are, inputs to current target, assign value if not already existing
and $* is the full name of the target whereas $/ is the “matched part” of the target filename,
respectively.



3.2 CONCRETE DESIGN DECISIONS

established computer science practices, such as using [] for arrays and indexing,
and {3} for dictionaries.

One final point is that build definition should not look like COBOL, if at
all possible. THE RATIONALE FOR THIS DESIGN CHOICE SHOULD BE
FAIRLY EASY TO SEE AT A GLANCE.

3.2 Concrete design decisions

Coming up with solid design principles is difficult, but that is only one half of
the job. The second part is creating the actual product while keeping true to the
original vision. This is also the trickier part of the two, because implementing
things in the real world turns up lots of edge cases and complications that were
not apparent during the original design.

The most important design choice (and in fact the first) is that the build
definition language must not be Turing-complete [19]. What this roughly means
is that the Meson definition language is not really a programming language as
such. It can not express an arbitrary program. In practice this means that you
can not define functions, macros or arbitrary loop constructs.

Meson is at its core an imperative definition language. That is, it proceeds
along the build definition one line at a time in sequence. This is in direct contrast
with many other build systems, most famously Make, that are fully declarative.
In these systems you don’t describe a series of steps to execute but instead
merely a set of constraints, which the build system will then evaluate in any
way it seems fit. Purely declarative systems are two edged swords. On one hand
when they work they can be extremely terse, readable and performant. On the
other hand when there are bugs in the declarations the debugging experience
may be exhausting. Fortunately declarativity is not an either/or proposition
and it is possible to use declarative elements in iterative systems. In the spirit of
Albert Einstein it could be said that Meson aims to be As declarative as possible
but no declarativer.

Another major design choice is that all created objects are immutable. They
can not be altered in any way (even deleted) once created. It follows that
all information needed to create an object must be present when it is created.
This makes it easy to see what goes into any object, which again simplifies
understanding build definitions. There are a couple of object types that can be
modified after creation, these exceptions to the rules will be discussed later.

An unfortunate truth about build systems is that the real world of software
development can get quite messy. Examining build definitions of large scale
existing projects turns up a lot of custom functionality that has been put inside
build definition files. These include things such as shell pipelines for processing
files and querying information about the current system. Having the code inside

25



26

3 MESON SYNTAX

build files makes them hard to read, not to mention that all special characters
must be quoted to make them work, including the quoting of quote characters.

In Meson having this kind of code inside the build definition file is considered
an antipattern. Instead all such functionality should be put in standalone script
files that can then be invoked from meson.build files. This is the “escape hatch”
that makes it possible to run arbitrary code while keeping the main build defi-
nition clean and understandable. It also means that the external scripts can be
written in any programming language: Unix shell, Python, Windows .bat files
or anything else. From the build system point of view they are indistinguishable.

These design choices all make sense on their own. But the true power of
them comes when they are put together. The most illuminating example is the
combination of immutability and the requirement that all information about a
target must be presented at the point of object construction. What this means
is that circular dependencies are impossible to express.

In traditional and fully declarative systems you have to refer to things (de-
pendencies in this case) with a reference, which is typically a string holding the
dependency’s name. It is easy to accidentally create a dependency loop. To
define a dependency between two objects in Meson you must provide the actual
object itself as an argument. There is no way to create an object that refers to a
different object that will come to existence at some later point in time and since
objects are immutable such a loop can not be created after the fact either. Thus
it is impossible to express a loop between two objects. Declarative systems have
a cycle detector that errors out when the user has written a cyclic dependency,
but build definitions in Meson are guaranteed to be cycle free by construction.

Fans of functional programming languages may have noticed many familiar
concepts in this section. This is not a coincidence. Functional languages have
proven to lead to reliable and performant programs. Meson aims to provide the
same power to build definitions by stealing and adapting as many useful tools
and techniques as possible.

3.3 Elementary types

String typing, as used in several build systems, is easy to get started with but
becomes troublesome fairly quickly. Suppose for example that you want to exe-
cute an external command and pass the string >first second’ as a command
line argument. All command shells break arguments at the space character by
default, thus that string would be passed as two different arguments, >first’
and ’second’. This may be what you want, or it might not be. Perhaps you
meant to pass the entire string as a single argument.

There are two different contexts for the string, the quoted context and the
unquoted context. The string itself does not carry any information about how



3.3 ELEMENTARY TYPES

it should be used. It is the responsibility of the developer to deal with this
manually. In practice most people don’t, causing their scripts to fail with weird
errors when they are fed a file or directory name containing a space. Such names
are rare on Unix but common on Windows.

Meson solves these problems by having a rich vocabulary of types. Most of
them are the same types you know from other programming languages. This
section describes “elementary” data types, whereas the next one is about domain
specific object types. The difference between the two is that elementary types
are general, whereas domain object types always represent items and elements
that are specific to a build system.

3.3.1 Strings

Most data manipulations in build files deal very closely with strings. In Meson
strings are defined with single quotes.

var = 'some text'

This format is convenient for short strings. For large blocks of text, especially
those containing new line characters, the triple quoted string is a better choice.

var = '''This is the first line of text.
This is the second line.

This is the fourth line after one empty line.

As can be seen, the triple quoted string starts with three consecutive single
quote characters and continues on until a second set of three consecutive single
quotes is encountered.

Strings can be concatenated with the + operator.

strl 'Hello'

str2 = 'world'

combined = strl + ', ' + str2

# combined is assigned the string 'Hello, world'.

In addition strings can also be joined with the / character. This performs
a path concatenation. The strings are treated as file system paths and joined
together according to the semantic rules governing directory manipulations.

27



28

3 MESON SYNTAX

diril 'foo' / 'bar'
dir2 = 'foo/' / 'bar'
# both dirl and dir2 contain foo/bar

If the latter string represents an absolute path, then the first part is dropped.

dirl = 'foo/bar'
dir2 = '/baz’
dir3 = dirl / dir2

# Value of dir3 is '/baz'.

String objects have a large set of methods. Probably the most used one of
these is format for creating new strings.

msg = 'Value of @0@ is @1Q.'.format('variable', 6)
# msg is 'Value of variable is 6.'

The format method goes through the string looking for substrings of the form
@XQ, where X is a number. It will then create and return a new string where those
are replaced with the textual representation of the corresponding argument to
the method call. In this case @0@ gets replaced with the first argument, which is
>variable’ and @1@ gets replaced with the second argument 6. The formatter
is strict: if the string had an substring @2@ Meson would detect that it is trying
to access a nonexisting argument and would immediately halt and exit with a
hard error.

The string object contains many other useful methods. A full list with de-
scriptions can be found in Section 17.6.

3.3.2 Integers

In Meson numbers are integers and they behave in the usual way:

value = 1 + 2 x 3
# value is 7 rather than 9
# because * has higher precedence than +

It is seldom necessary to perform complex arithmetic operations in Meson
files. Because of this Meson does not have a concept of rational or decimal
numbers, only integers.



3.3 ELEMENTARY TYPES

3.3.3 Booleans

Boolean variables can hold one of two values, true or false. They are mostly
used for branching in if clauses. 29
Booleans can be combined with the and, or and not operators.

vl = true or false # vl will have the value "true".
v2 = true and false # v2 will have the value "false".
v3 = not true # v3 will have the value "false".

3.3.4 Arrays

An array is a sequence of zero or more elements that may be of any type. In
practice most arrays consist of only one type, most commonly strings, but Meson
permits any combination of types.

str_arr = ['one', 'two', 'three']
mixed_arr = [1, 'two', 3]
# Both of these are valid.

Individual elements of arrays can be accessed with the indexing operator [].
Negative indexes count backwards from the end of the array.

myarr = ['one', 'two', 'three']
value = myarr[1]

# value contains the string 'two'
value = myarr[-1]

# value contains the string 'three'

Indexing out of bounds, that is, with a positive number that points past the
last element or with negative number past the beginning, is a hard error.

Like almost all other objects, arrays are immutable. You can not add or
remove things to an array once created, you can only create a new one.

arrl = ['one', 'two'l
arr2 = arrl + ['three']
# arr2 is ['one', 'two', 'three'l]

A common operation is to simulate extending an array by creating a new
array and assigning it to the same variable.



30

3 MESON SYNTAX

my_arr = ['one', 'two'l]
my_arr = my_arr + ['three']

Because this is done so often, Meson provides a convenient shorthand for this
operation, the += operator.

my_arr = ['one', 'two'l
my_arr += ['three']

Note, though, that this does not change the old value that was stored in
my_arr. All places where it was used continue seeing the old value. The only
thing this expression does is that from this point forward in time, when my_arr
is used it will contain the new value.

3.3.5 Dictionaries

A dictionary is a data structure consisting of keys and corresponding wvalues.
They similar to dictionaries and hash tables in many programming languages
with the limitation that keys must be strings. No other key type is supported
and trying to use such a type is a hard error. Thus Meson dictionaries behave
almost identical to JSON objects.

d = {'keyl': 'valuel',
'key2': 'value2'}

Element access works just like it does for arrays.

d = {'key': 'value'}
result = d['key']
# result contains the string 'value'

Dictionaries can be combined with the + operator in a similar way to arrays.

dl = {'keyl': 'valuel'}

d2 = {'key2': 'value2'}

d3 = dl + d2

# d3 contains all entries from dl and d2.

The exceptional case is when both dictionaries to be added contain the same
key. In this case the value from the object on the right hand side is used.



3.4 BUILD SYSTEM PHASES

Source code changed

o

begin —>»t configuration —>»{ compilation —>{ done

\

Build configuration changed

Figure 3.1: The distinct phases of a build.

dl = {'key': 'vanishes'}

d2 = {'key': 'persists'}

d3 = dl + d2

# d3['key'] contains the value 'persists'

3.3.6  Null type

Many programming languages and scripts have the concept of a null type. In C
it is called the NULL pointer, in Python it is called None and in Ruby it is called
nil.

Meson does not have such a type because it has been found to be a frequent
source of bugs in practice [9]. Instead of a null type you should use a more
appropriate type, such as using the empty array [] to mean “no entries”.

3.4 Build system phases

Every software project build starts with just a checkout of the source code. It
ends with the final built artefacts ready to build and install. Software develop-
ment is a continuous iterative process between these two extremes as shown in
Figure 3.1.

First the build is set up with the meson command. This runs the configuration
phase, in which Meson goes through the build definition files one by one and
generates the files needed by the build backend. Then the backend is invoked
to run the compilation phase. This is when compilers, linkers and other tools
are unleashed to build the final artefacts. After this the real work of software
development can start. This process is called the edit—compile—test cycle because
it usually consists of small changes, which are compiled and run until the desired
functionality has been implemented.

31



32

3 MESON SYNTAX

The configuration and compilation phases have very different behavioural
characteristics. Configuration is single threaded and usually fairly fast, even
complex projects take under a minute to run. Building is massively parallel
but can take a long time. A large project can take hours to build even on
high end desktop machines. On the other hand incremental builds can be very
fast. Changing one file and rebuilding can take only a few seconds even for
huge projects. On the other hand configuration always takes roughly the same
amount of time.

To keep developers “in the zone” Meson tries to keep incremental builds as
fast as possible. This means reconfiguring the project as seldom as possible.
Usability, on the other hand, requires that the system detects when it needs a
reconfiguration and does so automatically and transparently. Thus changes in
the source files themselves do not cause a reconfiguration, but changes in build
setup do. This means changes in build definition files and project options.

3.5 Program flow

A Meson build definition consists of statements which are executed in sequence.
This is known as imperative programming and is the most common programming
paradigm currently. What makes Meson different from those languages is that
a statement, once executed will not be executed again. Or, in other words, the
flow of execution only goes forwards. There are no mechanisms for declaring
arbitrary loops or custom functions or macros.

In regular programming languages these sorts of limitations could not be
made. The end result would not be usable. For a build system these limitations
are beneficial, because they provide two major advantages: one theoretical and
one practical. The theoretical one is that every Meson build definition is guar-
anteed to terminate. In computer science whether a computer system will stop
for a given input is known as the halting problem. For Turing-complete program-
ming languages the halting problem is undecidable, meaning it is impossible to
prove whether a given program will stop or carry on executing forever. Since
Meson build definitions can not loop forever, we can conclude that the definition
language is not Turing complete.

The practical advantage is that these limitations make build definitions no-
ticeably simpler to read and reason about, especially when combined with im-
mutable objects. When an object is created, all the information about it must
be present at the point of construction. Since objects are immutable we know
that nothing about them can change after they have been constructed. This
reduces the cognitive load on developers when compared to a system that allows
build definition data to be mutated in arbitrary ways at any time.

The lack of custom functions also simplifies things. Since all data manipula-



3.5 PROGRAM FLOW

tion is done via the same standard primitive operations, they are the same in all
build definitions. This makes it easier to move between different projects, since
their overall structure is similar. The obvious downside is that it is not possible
to create simple helper macros and functions. In a general programming lan-
guage this would be unacceptable, of course, but when writing build definitions
the problem space is much smaller, so this is a worthwhile tradeoff2.

3.5.1 Subdirectories

Having the entire build definition in a single file is simple, but unfortunately it
does not scale. Most software projects span multiple directories. Largest such
projects can contain hundreds or even thousands of subdirectories. To keep this
manageable the build definitions for each subdirectory need to be written in that
subdirectory, otherwise things become unmaintainable.

Meson supports distributing build definitions across multiple directories na-
tively. Transitioning between different directories happens explicitly, only when
the build definition executes a subdirectory traversal statement.

subdir('dirname')

This causes Meson to execute the following steps:

1. Stop executing the current file.
2. Go into the subdirectory specified in the call.

3. Start executing the meson.build file in the subdirectory from the begin-
ning.

4. When the build file in the subdirectory has been fully processed, return to
the original directory.

5. Resume executing the original build file.

This behaviour can be recursive, any subdirectory may have an arbitrary
number of subdir calls. This program flow is visualised in Figure 3.2.

From the user point of view the behaviour is roughly similar to having all
the code in the subdirectory’s file copied in the parent directory’s build file.
All variables declared in parent directory are visible in the subdirectory and
correspondingly all variables and state changes done in the subdirectory become
visible in the parent directory once control flow returns. It is common in Meson

2There are people on the Internet who strongly disagree with this.

33



3 MESON SYNTAX

meson.build foo/meson.build foo/bar/meson.build

begin

34

\

Y—

/
subdir('foo") subdir('bar')
Y T~y Y

finish

/

Figure 3.2: How control flows through a Meson build definition spanning multiple
directories. Each box represents the contents of a single meson.build file.

to define targets such as libraries in one directory, and then build targets, such
as tests, using the built library in a different directory.

This is done by first subdiring in the directory that holds the library defi-
nition:

# in top level meson.build
subdir ('src')

In the src subdirectory we define the library target and store it in a variable.

# in src/meson.build
1lib = shared_library(...)

Once control returns to the main build file, we can go in the test directory:

# in top level meson.build
subdir('test')

where we can finally specify the test executable.

# in test/meson.build
executable('test_exe',
link_with: 1lib) # "1ib" was set in "src" subdirectory

This works quite nicely but there is a potential source of errors here. If any
build file that is processed between subdirectories src and test reassigns the



3.5 PROGRAM FLOW

lib variable, the test executable will see the new value rather than the old one
that was set in src. This can not be prevented with any technological feature,
as it is a policy issue (and sometimes you do want to change the value). To avoid
mix-ups it is important to give variables unique and descriptive names so they
will not be mixed up and reassigned by accident.

3.5.2 Function calls

Function calls are the main vehicle for getting stuff done in Meson. They are
how you instruct the system to create build and link targets, run system tests
and everything else needed in your build. We have already seen many function
calls in code samples in this book. Let’s now look at how function calls are
defined in detail.

There are four main elements in a function call. They are all shown in the
following code snippet.

return_value = function_name(positional_argl, positional_arg?2,
keyword_argl: valuel,
keyword_arg2: value2)

The most important thing about a function is its name. It uniquely identifies
the functionality the function provides. Function names we have already seen
include executable, and shared_library.

Almost all functions need arguments that specify what exactly they should
do and how they should get it done. There are two different kinds of function
arguments in Meson: positional arguments and keyword arguments. Positional
arguments are the simpler of the two. They consists of entries one after the other
separated by commas. A function can take any number of positional arguments,
including zero. The message function, for example, takes only one argument:

message ('Some text.')

The function call prints the argument to the user’s terminal.

Message: Some text.

The Message: prefix is automatically added by Meson so users can easily tell
the difference between user messages and Meson status messages.

A positional argument can be any value such as a string, number, array or
a dictionary. It can even be a statement. It will be evaluated and its value will
be used as the argument. The call to message could also have been printed in
the following form:

35



3 MESON SYNTAX

message('Some' + ' ' + 'text.')

One function that takes a lot of positional arguments is executable. After
the executable name you can pass all the sources one by one.

executable('prog',
'filel.c', 'file2.c', 'file3.c', 'filed.c', ...)

Function calls like these get fairly tiring to write after a while, which is why
Meson does argument flattening to make things easier. You can pass positional
arguments in different combinations and Meson will figure out what you mean.
The simplest case is having the files in an array and then passing that in.

arr = ['filel.c', 'file2.c', 'file3.c', 'filed.c'l]
executable('prog', arr)

Passing some arguments standalone and the rest in an array works too:

arr = ['file2.c', 'file3.c', 'filed.c']
executable('prog', 'filel.c', arr)

Splitting the list in two arrays works:

arrl ['filel.c', 'file2.c']
arr2 ['file3.c', 'filed.c']
executable('prog', arrl, arr2)

Fans of deeply nested data structures can even go full Lisp:

arr = ['filel.c', ['file2.c', ['file3.c', ['file4.c']1]1]]
executable('prog', arr)

All of these four code snippets produce the same output: an executable that
consists of the four listed source files.

In addition to positional arguments, functions can also take keyword argu-
ments, colloquially known as kwargs. They are straightforward key—value pairs
and they are listed after all positional arguments. Some functions have manda-
tory keyword arguments and trying to call them without specifying the given
kwarg is a hard error. Usually keyword arguments specify additional features
to the function that change the default behaviour. By default build targets are
not installed, to specify that we want the target installed, we need to specify the
install keyword argument and give it the value true:



3.5 PROGRAM FLOW

executable('prog', 'file.c', install: true)

Like positional arguments, the value of a keyword argument can be anything;:
a string, number, array, a variable or a statement to be evaluated.

Keyword arguments can also be defined dynamically. This is achieved with
the special kwargs keyword argument. It takes a dictionary as its value and
adds all entries in it as keyword arguments to the function. This may seem
complicated based on description alone, but becomes clear with an example,
where we convert the previous example to use dynamic keyword arguments.

kwarg_dict = {'install': true}
executable('prog', 'prog.c',
kwargs: kwarg_dict)

This is identical to having the install keyword argument directly in the
function call. The only thing to note is that it is illegal to specify a keyword
argument both in the kwargs dictionary and in the function itself. That is, the
following is not permitted:

kwarg_dict = {'install': true}
executable('prog', 'prog.c',
install: true,
kwargs: kwarg_dict)

Meson will exit with an error if it detects duplicate keys, even if the values
are the same.

The fourth and final notable thing about functions is their return value. In
most cases it is assigned to a variable and then used later. Some functions do
not return any values. Trying to use the return value of such a function is an
error:

# This is an error because message() does not return a value.
var = message('No return value here.')

3.5.3 Method calls

Method calls are a way to invoke functionality provided by objects. For example
suppose we have an array and want to create a string telling how many elements
it has. This can be achieved with the following code.

37



3 MESON SYNTAX

array = [1, 2, 3]

string_template = 'The array has @0Q items.'
length_str = string_ template.format(array.length())

# The value of length_str is 'The array has 3 items.'.

We have used two different method calls to create the string. The first one is
the array’s length method which returns the number of elements. The second
is the string object’s format method, which we use to convert the integer into
the final string.

Passing positional and keyword arguments to methods is done in the exact
same way as for functions.

3.5.4 If clauses

Out of all all control operations if is perhaps the one that requires the least
amount of introduction, because it can be found in every programming language
and it works in the exact same way in all of them.

if x==
message('x has the value three.')
elif x>=3
message('x has a value larger than three.')
else
message('x is adorable.')
endif

The full if construct consists of three separate blocks. First there is the
mandatory if, followed by zero or more elif blocks followed by an optional
else block.

An if block starts with the if statement. It consists of the if keyword
followed by an expression which must evaluate to a boolean value. If the value
is true then Meson will execute all commands until it encounters an elif or
else statement whose contents it will ignore.

If the value in the if statement was false, the first block is skipped. If the
next statement is an elif statement it is processed in the exact same way as
the if statement was. First the expression is evaluated and then the block is
either executed or skipped depending on the value. If none of the if or elif
expressions have been true, the flow eventually reaches the else block whose
contents are executed.

if blocks can be nested to form arbitrarily complex decision trees.



3.5 PROGRAM FLOW

if conditionl
if condition2
message ('Both conditions 1 and 2 are true.')
else
message('Condition 1 is true but condition 2 is not.')
endif
elif condition2
message('Condition 1 is false but condition 2 is true.')
else
message('Both conditions 1 and 2 are false.')
endif

If the value of any evaluated branching condition produces something else
than a boolean value, Meson will exit with a hard error. There is no implicit
conversion from other data types to booleans, so for example the following sample
will exit with an error.

x =3

if x # x is not a boolean, leading to an error here.
message('x is non-zero.')

else
message('x is zero.')

endif

3.5.5 Ternary operator

A common use of the if clause is choosing between two values based on a
condition:

if condition
var = valuel
else
var = value2
endif

This is such a common thing that Meson provides a shorthand for this: the
ternary operator:

var = condition 7 valuel : value2

Ternary operators are interesting in that they have a dual nature. When
used sparingly they make build declarations simpler, and more readable and

39



40

3 MESON SYNTAX

understandable. On the other hand nesting ternary operators tends to produce
obtuse and undecipherable definitions where bugs love to hide.

Because of this Meson forbids nesting of ternary operators. If you need more
complex decision logic, it needs to be written explictly with ifs.

3.5.6 Foreach clauses

Sometimes you need to perform the same operation on a bunch of items. For
example you might want to build many executables with the same options. This
is especially common when defining test executables. Suppose we have created an
array that lists all the executables’s names and source files in a two dimensional
array like this.

programs = [['progl', 'sourcel.c'],
['prog2', 'source2.c'],
['prog3', 'source3.c'],
['prog4', 'sourced.c'],

]

We can then use the foreach clause to define all the targets using compact
notation.

foreach entry: programs
program_name = entry[0]
program_source = entry[1]
executable(program_name, program_source, ...)
endforeach

The end result is identical to expanding the loop manually:

executable('progl', 'sourcel.c', ...)
executable('prog2', 'source2.c', ...)
executable('prog3', 'source3.c', ...)
executable('prog4', 'sourced4.c', ...)

For this simple case both of these declarations are fairly similar but it is a
lot simpler to change the executable type in the former, because there is only
one executable declaration. Thus any changes are guaranteed to be applied
to all executables. If the declarations are separate, it is easy for them to go
accidentally out of sync, so that some changes are not applied to all invocations.
This can lead to nasty bugs. At the very least it is confusing for people who
need to understand and edit the build definitions later on in the future.

The foreach clause works both for arrays and dictionaries. The syntax is
slightly different for the latter.



3.6 OBJECT TYPES

dict = {'k1': 'v1',
'k2': 'v2'}

foreach key, value: dict
message ('Processing key Q0@, value @1Q.'.format(key, value))
endforeach

Running this script will produce either this output:

Message: Processing key k1, value vl.
Message: Processing key k2, value v2.

Or this one:

Message: Processing key k2, value v2.
Message: Processing key k1, value vli.

The order in which entries are traversed in dictionaries is not specified, so you
can’t predict which one will be used. You should not write any code that requires
dictionary entries to be processed in a specific order. If order is important you
should use arrays instead, they are always processed in order.

The observant reader might already have noticed that in Section 3.5 it was
stated that Meson does not permit loop constructs because they would cause the
language to become Turing complete. Yet this section has gone to great lengths
to describe how to write custom loops. This may feel like cheating but actually
it is not.

The foreach loop is not a free-form looping construct as described in Sec-
tion 3.5 because it is fully specified up front, or more specifically because you
can’t modify the array when looping over it. Thus if the array has, say, three
elements, the loop will go through three iterations and then terminate. If it
were possible to change the object being iterated over, an infinite loop could be
written. Because Meson objects are immutable, this is impossible and thus the
foreach loop is safe to use.

3.6 Object types

Elementary types are useful, but defining the entire project’s build definitions
with them is kind of like building a house out of chopsticks. Sure, you can
do it and it is an interesting challenge on its own but in practice it’s tedious,
unproductive and the end result is likely to collapse at the slightest disturbance.

41



42

3 MESON SYNTAX

What is needed, then, are higher level constructs that work well together. In
Meson these things are called objects.

These objects are quite different from objects as understood in common pro-
gramming languages, such as C++ and Java. There is no inheritance or type
hierarchies and users can’t define their own classes. Furthermore almost all ob-
jects are immutable so you can’t change them after they have been created. A
more accurate name for Meson objects would be something like opaque contain-
ers of domain-specific information, but it does not roll off the tongue quite as
smoothly as the word object.

There are three basic things you can do with objects. First you need to create
one. For example, here is how you’d create a shared library object:

shlib = shared_library('hello', 'hello.c')

The second, and perhaps the most common, thing is to use the object as
an argument to other functions and methods. For libraries this usually means
linking against them.

exe = executable('printer', 'printer.c',
link_with: shlib)

The third thing to do is calling methods on the object. A shared library
object does not have many interesting methods, but suppose we wanted to print
the full path of the object to the screen. It could be achieved with the following
code.

message ('The full path to shlib is:' + shlib.full_path())

3.7 Disablers

When a project gets bigger and more complex, one often ends up with a need
to disable parts of it. This can be either temporary for debugging purposes,
or permanent that depends on e.g. optional dependencies. The most common
way to do this is with if/else logic, but writing branches everywhere can get
tedious. Meson provides a helper primitive for this called a disabler object.

The basic concept is simple. Whenever a disabler object is passed as an
argument to a function or method call, the function is ignored and its return
value is a disabler object. This is roughly similar to how not a numbers (Nals)
behave in floating point math. Thus the values of all of the following declarations
will be a disabler object.



3.7 DISABLERS

dl = disabler()

d2 = executable('name', d1, ...)
d3 =1 + dil

d4 = 'string' + di

The same happens with branching logic, but there is an additional thing to
note. A disabler skips every branch.

d = disabler()

if d

# This branch is skipped
else

# This branch is also skipped.
endif

Disablers are greedy so one needs to be careful when using them. They
are most useful for disabling individual components such as plugins based on
whether their dependencies are found or not. They don’t work in the case where
you build one library or executable from many parts, because if any of the
subcomponents is a disabler, the entire target will be gone, which is usually not
the desired outcome.

There are three exceptions to the rule that disablers short circuit evaluation.
They are all functionality for setting and inspecting the contents of variables.

d = disabler()

is_found = d.is_found() # Returns false
set_variable('d2', d) # d2 will be set to a disabler
is_d = is_disabler(d) # Returns true

43






Chapter 4
Building blocks of a software
project

Every build system can be reduced to a pipeline architecture consisting of two
different elements: transformation blocks and connections between them. In this
way they are similar to Unix shell pipelines. A shell command to sort the lines
in a file and print the 10 first unique lines looks like this:

$ cat file.txt | sort | uniq | head -10

Each of these commands works in isolation. It does not need to know any-
thing about the other parts of the pipeline or even that there is a pipeline. The
job of the programmer is to manage data flow, specifying what data goes from
one command to another and the operational details of each block. Those are
specified with command line arguments to the individual commands. The same
applies to defining a project’s build setup.

This is where the similarities end. When defining a shell pipeline you have a
rich vocabulary of types, a typical Unix OS has hundreds of commands to choose
from. The data flow in shell pipelines is linear. It goes from one program to
another in a strict sequence. Build systems are the opposite of this. There are
only a few building blocks. In fact it is possible to define fairly large software
projects using only one operation: building an executable. Most projects consist
of libraries as well as executables for convenience. The data flow model, on
the other hand, is complex. The output of one block can be used as an input
to pretty much any other block. It can even be used as input multiple times
in different blocks. The data flow diagram in build systems is not linear, but
instead it is an arbitrary graph.

Most build systems, Meson included, limit the graph to being a directed
acyclic graph. This kind of a graph does not have circular dependencies, which



46

4 BUILDING BLOCKS OF A SOFTWARE PROJECT

command line arguments input files

N

program

Y

output

Figure 4.1: The elementary transformation operation of a build system.

are widely accepted to be a sign of poor design. A circular dependency happens
when the output of block A is used as input to block B, and the output of block
B is also used as input to block A. Running this leads to an eternal loop and
this is why these constructs are prohibited.

4.1 The elementary operations

The basic operating block of the build graph can be seen in Figure 4.1. A graph
for Unix shell would look identical. The figure basically describes executing an
arbitrary command line program. Every other operation is just a special case of
this operation. The common case is not even particularly interesting because it is
so general. Things only get interesting once we add different types of operations,
which is done via limitations.

The most common elemental operation in a build system converts source
code into a library or an executable. This is called the compile and link step.
As you can probably tell from the name it internally consists of two different
steps. Since those are implementation details and do not affect the build graph,
we can treat them as a single operation in this chapter. The diagram for this
operation can be seen in Figure 4.2.

Let’s start with the output, since it is identical to the general case. The
output file can be either a library or an executable. The difference between the
two is that executables can be run but not linked whereas libraries can not be
run but they can be linked into other targets?.

INeither of these statements is strictly speaking true, but that gets into very deep, very
black magic.



4.2 ADVANCED BUILD CASES

command line arguments

compiler and linker

source files

N\

header files

executable or library

dependencies

Figure 4.2: The basic build operation converts source files and extra data to an
executable or a library.

Inputs are where things start to deviate from the common case. There are
three distinct input file types: headers, sources and dependencies, which in
practice means libraries. The first two are used during the compilation step
and the last one during linking. In addition to files, dependencies may also
contain command line arguments. They must also be used to build the target
successfully. All of this will be handled by the build system automatically once
the developer has set up all dependencies correctly.

The output library of one target can be used as a dependency input in
another. This may produce yet another library that can be used in further
builds. The dependency library need not be self built, it can also come from
the toolchain. On most programming languages at least the standard library
is provided by the system, so programs don’t need to rebuild it from scratch.
On unixlike platforms using system provided libraries is both convenient and
common. Other platforms do not have a concept of system dependencies and
thus require users to do more work. Meson supports both of these workflows
natively.

4.2 Advanced build cases

Compilation and linking make up 95% of all the work for 95% of all projects.
Sometimes it is not sufficient, though, and we need to generate something else,
such as documentation. These are standalone things that do not affect the
compilation phase. Where things get really interesting is when we realise that
all inputs listed in the flow diagrams can be generated during the build. Meson

47



48

4 BUILDING BLOCKS OF A SOFTWARE PROJECT

generator source | y| compile and link > generator binary

/

code generation |lag—| input files

generated source

&

program source compile and link —>» final executable

Figure 4.3: A pipeline that builds a code generator, uses it to generate source
code and compiles the result.

has two limitations, command line flags and compilers can not be created on
the fly, they have to be specified up-front in build files. Everything else can be
generated. This limitation is not theoretical but an implementation choice. It
is possible to create a build system that is fully dynamic in this way but at the
time of writing nobody has yet created one.

Generating source code from some sort of definition file is a well established
discipline. It is typically used to handle serialisation or network protocols from
a higher level description language called a interface description language. The
main advantage of this is that such formats are easier for humans to write and
maintain than code that does equivalent work in the language itself. It also allows
one to generate code for multiple different languages from a single description
file.

The source code generator (often called a “compiler” but we’re not using that
term to avoid ambiguity with source code compilers) can either be found on the
system or it can be built as part of the build. If it is self built, the chain from
plain sources to a fully built executable is fairly complex. One such pipeline can
be seen in Figure 4.3.

The diagram illustrates nicely all the things discussed thus far. Mainly, that
the source of complexity comes from the way the individual blocks are connected
together. Each individual operation is simple and it can be analysed in isolation
from the rest of the build graph. The flow of data only goes forwards, meaning
we know things that must happen strictly before and after each individual task.
A graph with these properties can grow almost arbitrarily large and complex
and it can still be analysed and understood without superhuman effort.



4.3 GENERATING DATA

4.3 Generating data

Executables and libraries make up most of the build system’s work but not of
the output. A project usually needs a bunch of generated data files such as man
pages, documentation and resource files. These may require considerable work.
In computer games it is typical to have an asset pipeline that takes original
art and converts, compresses and packs it into the final form used by the game
executable.

Even though the actual generation process may be heavy and involved, to a
build system it is simpler than compilation. Every data generation system can
be reduced to the primitive operation in Figure 4.1: some files go in, a command
is executed and then other files come out.

4.4  Defining the graph in Meson

Building libraries and executables is most of the work a build system has to
do. It is not surprising, then, that defining libraries and executables, commonly
known as build targets, takes most of developer time when writing a build system
for a software project. Let’s get started with the first executable example from
Chapter 1.

project('simple demo', 'cpp')
executable('hello', 'hello.cpp')

Let’s split this program into two parts. We’'ll create a helper library that
does the actual printing and an executable that uses it. First we need to write
a header file for the library called greeter.h

#pragma once

void print_greeting();

The source file greeter.cpp holds the implementation.

#include'greeter.h"
#include<iostream>

void print_greeting() {
std::cout << "Hello, world!\n";

}

This simplifies hello.cpp to just calling the helper function.

49



50

4 BUILDING BLOCKS OF A SOFTWARE PROJECT

#include<greeter.h>

int main(int argc, char *xargv) {
print_greeting() ;
return O;

The source files have gotten (arguably) simpler, but the build definition gets
more complex as it has more to do. Instead of building a single executable, we
now need to build a library, an executable and make sure that the latter links
against the former. For simplicity we are going to use a static library.

All build definitions are still contained in a single meson.build file, but we’re
going to go through it in segments. First we define the project and build the
library.

project('library demo', 'cpp')
greeter_lib = static_library('greeter', 'greeter.cpp')

The only thing of note in this snippet is that we store the return value of the
static_library call into a variable called greeter_lib. This is needed so we
can refer to the library later. If the return value is not stored, it is impossible to
get a hold of the library object ever again.

Now that we have a library object, we can tell Meson to link the executable
against it.

executable('hello', 'hello.cpp',
link_with: greeter_1ib)

This is fairly anticlimactic, but this is where Meson differs from most other
build systems which tend to specify this same information with a string. As was
discussed in Section 3.2, this ensures that all build graphs are acyclic.

4.5 Splitting the project to multiple directories

Most new projects start with a bunch of files in a single directory. This is a
perfectly valid approach and can scale to surprisingly large projects. A project
providing a few command line applications might not need any more structure
than this. Most projects have a tendency to grow larger and larger and eventually
splitting the code base into logical components starts to make sense. The most
common approach is to put each component and all its source files in their own
directories.



4.5 SPLITTING THE PROJECT TO MULTIPLE DIRECTORIES

project root

greeter
greeter.cpp
greeter.h
meson.build
—hello.cpp
L —meson.build

Figure 4.4: A possible directory layout of a project with a standalone library
component.

Moving targets to different directories takes only a small amount of effort in
Meson. To see just how much, we’re going to move the greeter library to its
own subdirectory called greeter. The resulting directory layout can be seen in
Figure 4.4. All source files retain their contents unchanged. Only build definition
files need to be changed.

The build file in the greeter subdirectory has the static_library declara-
tion and nothing else. It is identical to the definition that was used before the
split.

The top level build file becomes simpler.

project('split demo', 'cpp')

subdir('greeter')

executable('hello', 'hello.cpp',
include_directories: 'greeter',
link_with: greeter_lib)

The first change is the subdir call that tells Meson to go and process the
greeter subdirectory. After it has finished, Meson will continue processing the
next line that contains the executable definition. It has one new keyword ar-
gument, include_directories. It tells Meson to add the given directory to
the set of header search directories for the given target. Without this declara-
tion the source code would fail to compile. The main file’s include declaration
#include<greeting.h> would fail, because the compiler would not be able to
locate greeting.h.

It might seem confusing at first sight that linking can use the greeter_lib
variable even though it is not defined anywhere in the current file. All variables
set in subdirs persist and are accessible in their parents after subdir processing
is done. In computer science terms Meson does not have scoped variables, only

51



52

4 BUILDING BLOCKS OF A SOFTWARE PROJECT

global ones. Global variables are strongly discouraged in general purpose pro-
gramming languages, for very good reasons. But since Meson is a declaration
language, this design is suitable, because it makes variables’ life cycles simple.

4.6 Target properties

The commands that define build targets have a substantial number of customisa-
tion points. As projects grow it fairly quickly becomes necessary to set these to
non-standard values. Fortunately here, as in most cases, you usually only need
to tweak only a few of the available options. Out of these the most common is
setting custom compiler flags.

To see how this is done, suppose we want to add a debugging tool to the
greeter library. It is used by writing a function call TRACE() to the source code.
This will cause the system to print out a trace message that consists of the
current function’s name, source file and line number.

The function that does the actual printing looks like this:

void print_trace(const char *function_name,
const char *file_name,
const int line_num) {
std::cout << "TRACE: "

<< function_name

<< '

<< file_name

<< !

<< line_num

<< '\n';

We don’t want these messages written when the program is being run nor-
mally, only when it is built in a special mode that enables trace debugging. In
C-like languages this is done with the preprocessor by defining the TRACE func-
tion call to either call the trace above or do nothing based on the value of a
given token.

#ifdef GREETING_ TRACE

#define TRACE() print_trace(__PRETTY_FUNCTION__, \
__FILE__, __LINE_))

#else

#define TRACE()

#fendif




4.6 TARGET PROPERTIES

If your C-preprocessor-fu is not that strong, this code defines the TRACE
macro depending on the value of the preprocessor variable GREETING_TRACE.
It is usually a good idea to prefix preprocessor option names like these with a
unique string that refers to the name of the current project. This avoids token
name collisions. If this variable is set, then debug output is printed and if it is
not set, then the TRACE function call vanishes without a — well — trace.

The last thing we need is a way to set GREETING_TRACE from the build def-
inition file. This is done by adding a new command line option to the greeter
build target using the cpp_args keyword argument for C++. Similarly the com-
pilation arguments for C would be set with the c_args keyword argument, Java
arguments with java_args and so on.

greeter_lib = static_library('greeter',
'greeter.cpp’,
cpp_args: ['-DGREETING_TRACE'],

All of these settings are per target only. That is, they are only used when
building this particular target. They won’t be used anywhere else, including
any targets that link with this library. Some build systems behave differently
in this case and apply some (but usually not all) properties transitively. This is
usually not a problem but people accustomed to the transitive behaviour might
be surprised by this.

All the plumbing is now set up and we can add trace statements to the code.

void print_greeting() {
TRACEQ) ;
std::cout << "Hello, world.\n";
TRACEQ) ;

After a build we can run the program and see the trace statements as ex-
pected.

$ ninja
[4/4] Linking target hello.
$ ./hello

TRACE: void print_greeting() ../greeter/greeter.cpp:24
Hello, world.
TRACE: void print_greeting() ../greeter/greeter.cpp:26

Tracing can be disabled by removing or commenting out the line containing
cpp_args keyword argument from the build definition file. This is a coarse

53



54

4 BUILDING BLOCKS OF A SOFTWARE PROJECT

approach but it works for features that change rarely. Later in this book we are
going to examine ways to make switching between the two modes smoother.



Chapter 5
External dependencies

John Donne was an English poet who lived in the 1600s. His best known poem
deals with interactions between humans [4].

No man is an Iland, intire of it selfe;
every man is a peece of the Continent, a part of the maine

There are many ways to interpret this phrase, one of which is that while
humans can work in isolation, their achievements and ideas only truly come to
life when interacting with their fellow humans. The same can be said of software
systems. Converting Donne’s quote to contemporary software engineering, one
might end up with something like the following.

No software program is an island, with the exception of a
group of highly specialised programs, mostly embedded firmware
that do not communicate with other systems, and which can
usually be ignored in order to make the general case easier

to reason about.

This demonstrates why engineers rarely make good poets.

5.1 What is a dependency?

Dependencies are an integral part of modern software development but there is
not an agreed-upon definition of what constitutes a dependency. For the pur-
poses of this book we shall define that a dependency is any piece of functionality
that does not come from the current project being built. This definition is fairly
broad and there are setups where this does not hold but it covers the common
use cases fairly well.



5 EXTERNAL DEPENDENCIES

Within this definition there are many different types of dependencies. The
most elementary dependency is the standard library of the programming lan-
guage in use. Some languages, such as Python and Java, have an extensive
standard library. In these languages is is possible to create large and complex
programs using no other dependency than the standard library. Other languages,
such as C, go the opposite way and have minimal standard libraries. It is even
possible to compile programs without any standard library components.

When talking about dependencies, the most common thing people think of is
the prebuilt third party library. In the C family of languages this means a library
(either shared or static) of code and one or more header files that describe the
library’s interface, also known as the Application Programming Interface or API.
These libraries can either be provided by the system or a standalone dependency
manager tool. A real-world example of this would be building a GUI application
on Linux. The system typically provides the GTK widget toolkit as a system
library. The application needs to compile and link against it to make use of the
functionality. This chapter focuses mostly on these kinds of dependencies.

Some dependencies are not provided as libraries but instead as source code
that projects are expected to copy inside their own projects. This is an uncom-
mon approach for dependencies, because keeping the embedded copy up to date
is a fair bit of work.

Some languages have unique dependency types, such as C++ which has the
concept of header only libraries that are like regular dependencies except that
there is no library component. Instead all the code is in the header and it is
compiled inside the targets using it. From the user point of view there is no
difference between these two types. Source files in a project include the headers
they need and the build system will link the output with a library if needed.

Not all dependencies are code. Tools and executables also count as depen-
dencies, because without them the project can not be built. Generators that
convert description languages to source code are the most common example,
but there are many other types of executable dependencies. Documentation
generators such as Doxygen and Gtk-Doc, static analysers and other such tools
are all useful dependencies in software development.

5.2 Finding and using dependencies

Using dependencies is a two phase task. First you need to tell Meson to find
your dependency. We’ll use the Zlib compression library as an example.

zlib_dep = dependency('zlib')

The return value z1ib_dep is a dependency object that encapsulates every-



5.2 FINDING AND USING DEPENDENCIES

thing needed to use the given dependency. If the dependency can not be found,
Meson will exit with a hard error. Thus we know that the result object is always
valid.

The second phase is using the dependency when defining a build target.

exe = executable('program', 'program.c',
dependencies: zlib_dep)

This tells Meson to set up the build of program so that it can use the zlib
dependency. Usually this means adding compiler flags that add the dependency’s
headers in the compiler’s search path and linker flags that link the executable
against the Zlib library.

The resulting compiler command line might look something like this:

$ gcc -c -o program.o -g -I/usr/include/zlib program.c

The -I argument adds the header directory to the search path®. The corre-
sponding link command might look like the following;:

$ gcc -o program program.o -1zlib

The only thing added is the linker argument -1zlib. Its semantics are
roughly look up a file named libzlib.so or libzlib.a in the system default library di-
rectories and link it to the program. If the library had been at a custom location,
we would have needed to add it to the library directory list with the command
line argument -L/path/to/directory. This is the equivalent of specifying a -I
argument to the compiler.

5.2.1 Modular dependencies

Most external dependencies provide only one item, usually a library. Some are
large conglomerations that provide components that can be used independently
of each other. Perhaps the most known example is the Qt framework [15]. It
has functionality ranging from basic container types to graphical user interface
widgets, networking code and even a fully fledged web browser component.

Choosing which subcomponents should be used in a dependency is done with
the modules keyword argument. A CLI application using Qt would be defined
like this:

1On many unix platforms Zlib does not need an include argument since its header is in the
system global include directory. However we have used one here for expository purposes.

57



5 EXTERNAL DEPENDENCIES

qtbcore_dep = dependency('qt5', modules: 'Core')

The module keyword can have more than one entry. A typical dependency
declaration for a graphical Qt application that also uses the network and printing
requires only slightly more typing.

qt5_dep = dependency('qths', modules: ['Widgets',
'Network',
'"PrintSupport'])

There is no formal specification on which dependencies have modules, what
those modules are and how they should be used. Each dependency type gets to
decide that on a case-by-case basis. At the time of writing the only dependencies
that provide modules are qt5, qt4 and boost with the module names mapping
directly to the underlying projects’ components.

5.3 Dependency provider backends

Now that we know how dependencies are used, a reasonable follow-up question is
how does Meson find the dependencies. This information is especially useful for
debugging why dependencies are not found even though they should be. Meson
does not look up anything by itself, instead it shifts that task to one of many
different dependency provider programs. Meson tries to select the correct back-
end to use automatically but this can be overridden with the method keyword
argument.

d = dependency('depname', method: 'lookup_method_name')

The function supports the following lookup methods.

5.3.1 Pkg-config dependencies

The most used dependency program is called Pkg-config [8], which is the de facto
standard of providing dependency information on Linux and other free and open
source operating systems and which also works on other platforms like Windows.
This is the default dependency lookup method of Meson. Inspecting what de-
pendencies are available from pkg-config on the current system is easy with the
command line tool. Here is a command that prints 10 random dependencies
that are installed on the current system:



5.3 DEPENDENCY PROVIDER BACKENDS

$ pkg-config --list-allltail

python-3.6 Python - Python library

menuw menuw - ncurses 6.1 add-on library
gtk+-3.0 GTK+ - GTK+ Graphical UI Library
ncurses ncurses - ncurses 6.1 library

Qt5Concurrent Qt5 Concurrent - Qt Concurrent module
libidn2 libidn2 - Library for IDNA2008 and TR46
gio-2.0 GIO - glib I/0 library

gapi-2.0 GAPI - GObject .NET API Wrapping Tool
xdmcp Xdmcp - X Display Manager Control Protocol
renderproto RenderProto - Render extension headers

Inspection what command line arguments each dependency adds can be done
with the --cflags argument.

$ pkg-config --cflags ncurses
-D_GNU_SOURCE -D_DEFAULT_SOURCE

On this system ncurses does not require any custom header include paths, but
it does require two preprocessor definitions. Linker arguments can be obtained
in the same way.

$ pkg-config --libs ncurses

-lncurses -ltinfo

Here we see that using ncurses requires linking against two different libraries.
In addition to using pkg-config dependencies, Meson also provides helper
functionality to create pkg-config output files. See Section 20.7 for details.

5.3.2 (CMake dependencies

CMake [3] is a popular build system that also has its own dependency provider
mechanism. It also provides a way to provide dependencies in similar way to
pkg-config but the mechanism is only for CMake’s own use. It is not meant for
general usage.

Meson can use CMake to extract this dependency information and use CMake
dependencies as if they were native. As can be expected this is not as reliable
as something like pkg-config.

5.3.3 Qmake dependencies

Qmake is a build tool provided by Qt. It provides a way to get dependencies
about the Qt installation much like pkg-config. Qmake only provides information

29



60

5 EXTERNAL DEPENDENCIES

about Qt, other packages don’t integrate with it. Qt does provide dependency
information also via pkg-config files on some platforms.

5.3.4 Custom script dependencies

Some projects do not trust third party tools such as pkg-config but instead
provide their own standalone scripts to provide dependency info. They behave
mostly identical to Pkg-config but you just need to know to call, for example,
cups-config rather than pkg-config. Meson maintains a list of these depen-
dencies and tries to use the custom scripts whenever possible.

Some projects provide both dependency types. For example SDL2 provides
both pkg-config files as well as its own sd12-config script. In these cases Meson
will default to using pkg-config.

5.3.5 System dependencies

Some dependencies are provided by the operating system in a special way. A
common example is OpenGL. These dependencies are platform-dependent.

5.3.6 Apple framework dependencies

Both macOS and iOS have their own dependency mechanism that is based on
frameworks. These are bundles of libraries and headers that need to be installed
on a specific location on the device. The Meson name for this dependency
method is appleframeworks and it looks up the given framework by name from
the system directories.

5.4 Executable dependencies

Finding executables to run from the system is done with the find_program
command.

prog = find_program('progname')

Like with dependencies, if the program is not found, Meson will exit with a
hard error. Programs found in this way can be either invoked immediately with
run_command or used in custom and run targets.

Programs are looked up in directories defined in the PATH environment vari-
able. In addition the lookup mechanism will, as a special case, look up programs
(usually scripts) that are in the current source directory. On unix platforms
whether a command can be executed is based on how the executable bit is



5.5 DEPENDENCIES THAT DON’T PROVIDE ANY DEPENDENCY FILES

set on the file. Meson assumes that all files marked as executable are directly
runnable. On Windows the lookup is trickier. By default only files with the
extension .exe, .com or .bat can be run, but most scripts do not have those
extensions. For example Python scripts either have the extension .py or have
no extension at all. In these cases Meson will examine the contents of the script
file to see if it starts with the Unix shebang line:

#!/usr/bin/env python3

This tells the Unix shell interpreter that this script should be run with the
python3 command. Meson will see if Python 3 is available on the current system
and if it is, transparently creates a program object that runs the script via the
given interpreter. Since Meson is implemented in Python 3, a Python interpreter
is guaranteed to always be available. Thus all scripts written in Python 3 can
be used on any platform with the same Meson snippet:

script_prog = find_program('somescript.py')

5.5 Dependencies that don't provide any dependency files

Most libraries in common use provide dependency information, usually via pkg-
config. Sadly this is not always the case, especially for low level and “vintage”
libraries. In these cases you need to introspect the build environment directly.
This is done with functionality provided by the compiler object. As most de-
pendencies are libraries, the most direct way is to look it up directly by name.

cc = meson.get_compiler('c')
lib_dep = cc.find_library('something')

The output 1ib_dep is an object that can be used like a dependency.

exe = executable('program', 'program.c',
dependencies: lib_dep)

Sometimes you might need to look up headers. For example in C++ it is
common to provide functionality as header-only libraries. The lookup code is
roughly similar:

if cc.has_header('functionality.h')
# The header was found.

else
# The header was not found.

61



62

5 EXTERNAL DEPENDENCIES

# Either fallback to something else or exit.
endif

Since this would be too easy, some libraries are needed on some platforms
but not on others. The C math library is a well known example. It is part of
the standard library on every platform except Linux. Thus we do need to look
it up on Linux but not on other platforms.

m_dep = cc.find_library('m', required: false)
exe = executable('program', 'program.c',
dependencies: m_dep)

On platforms that don’t have a standalone math library, the lookup fails and
returns a not found object. Build targets ignore those so this code, while a bit
tedious, works on all platforms. Other libraries that behave like this include d1
and rt.

As a final exception we have threading support. It works differently on
different platforms and there are many ways to set it up that almost work. For
this case Meson provides a pseudo threads dependency:

thread_dep = dependency('threads')
exe = executable('program', 'program.c',
dependencies: thread_dep)




Chapter 6
Subprojects and internal
dependencies

Chapter 5 discussed how to use external dependencies provided by the system.
They are highly convenient and easy to use but there are many cases where
system dependencies are not an option. The most common reason is that not
all dependencies are available as system dependencies. Operating systems up-
date fairly infrequently, so it is possible that you need a newer version of the
dependency than is currently provided by the system.

Many operating systems do not provide any third party dependencies. The
only thing you get are core system functionality. There are many third party
dependency provider systems for these cases, but using one is always an extra
hassle. It would be convenient to be able to build your dependencies transpar-
ently at the same time as the actual project. Meson provides for this using a
mechanism called subprojects.

6.1 Subproject basics and layout

A subproject is simply a way to build one Meson project in an isolated sandbox
inside a different project while using the same options and settings for both.
There is always one master project, which can have zero or more subprojects.
Subprojects may not be nested meaning they can not have subprojects of their
own. They can use other subprojects in the master project. A visualisation of
the layout can be seen in Figure 6.1.

Not being able to have subprojects within subprojects may seem limiting (and
it is), but there are very good reasons for this design decision. The main one
is reliability, meaning that within one project there must be only one version of
any dependency. Linking more than one version of a library (even accidentally)



6 SUBPROJECTS AND INTERNAL DEPENDENCIES

master project

uses subproject2

subprojects directory

subproject1 subproject?2 subproject3

uses subprojecti

Figure 6.1: There is only one level of subprojects. If a subproject tries to use a
different subproject, it gets the one belonging to the master project, not its own
embedded copy.

in the same target is almost guaranteed to be undefined behaviour with the
nastiest of outcomes. The program might work fine for a long time but break
mysteriously in production or on a slightly different machine. This can not be
reliably prevented.

The other main advantage of this setup is that choosing which version of any
given dependency is unambiguous. If there are many different copies embedded
around the project tree, it is not clear which one of them actually got used.
Furthermore, even innocuous changes might change which version is used. This
can cause a project that was working to fail, either by not building at all or
failing tests or just plain misbehaving at runtime.

6.2 Using subprojects

There are two different ways of using a subproject. The first is the subproject ()
function call. The second one is an indirect method that will be described later
in this chapter as it requires more background knowledge. The basic invocation
looks like this:

sp_obj = subproject('projname')

This call causes several fairly complex things to happen behind the scenes.
First of all Meson will suspend the state of the current project. It will then look
up the specified subproject, which must reside in subprojects/projname at the
project’s source root. It will then create a new, clean state for the interpreter
that runs the builds.



6.2 USING SUBPROJECTS

It will then change to the subproject directory and execute the build defini-
tion there. From the subproject’s point of view the invocation is identical to if
it was being run directly. A project can query if it is being used as a subproject,
but most projects don’t need to know or care about that.

Once the subproject has finished, Meson will take it and store its state in
a subproject object, which is then returned from the subproject function call.
The master project will then continue executing. All things defined in the sub-
project will be built and used: its tests will be run when executing the test
target and its files are installed when running the install target. If any step in
subproject configuration fails, Meson will exit with a hard error. This can be
avoided with the required keyword:

sp_obj = subproject('nonexisting', required: false)

In this case Meson will return an empty subproject object. The object has a
found method that can be used to check if the project was found.

Running a subproject by itself is not that helpful. Because all projects are
isolated from each other via sandboxing, they can’t really communicate directly.
There is no way for subprojects to query things from the parent project, but the
subproject does provide a way to reach inside the subproject. This is done with
the get_variable method. Suppose that you want to link against a library built
in a subproject. For this you need two things, an include directory for headers
and the library itself. They can be defined in the subproject with these lines of
code somewhere in the project definition:

inc
1lib

include_directories(...)
shared_library(...)

To build against this library the master project would need to issue these
commands:

sp = subproject('spname')
sp_inc = sp.get_variable('inc')
sp_lib = sp.get_variable('lib')
executable(...,
include_directories: sp_inc,
link_with: sp_1lib)

The get_variable method hoists variables from the subproject to the cur-
rent project. Since variables holding include directories and build targets can
be used in any directory, they will also work when used in the parent project.
Meson takes care of expanding all paths correctly.



66

6 SUBPROJECTS AND INTERNAL DEPENDENCIES

This direct approach works and is simple but on the other hand it is fairly
tedious with a lot of manual work and has other downsides as well. For example if
the subproject changes the names of the variables where it stores its dependency
information, projects using it will no longer work.

6.3 Internal dependencies

To fix these problems and to make the entire process of using subprojects
smoother, Meson allows projects to define their own dependency objects with
the declare_dependency function. Dependency objects defined in this way be-
have identically to external dependency objects obtained with the dependency
function.

Adding a dependency object to the subproject discussed earlier requires only
one more line of code:

inc include_directories(...)

1lib = shared_library(...)

main_dep = declare_dependency(include_directories: inc,
link _with: 1ib)

The name of the dependency variable is arbitrary, but projectname_dep is
the recommended naming scheme. Linking against the subproject library is now
simpler:

sSp = subproject('spname')
sp_dep = sp.get_variable('main_dep')
executable(...,

dependencies: sp_dep)

Internal dependency objects are useful even without subprojects. Every time
you need to build a target which uses a self built library and its headers, you
might consider encapsulating the library in a dependency object instead. A
typical case is tests. There may be tens of test executables for one library, and
dependency objects make linking a lot less cumbersome.

6.4 Combining subprojects and internal dependencies

Thus far we have seen how to use an external system dependency and how to
use an internal, self built dependency. This raises the obvious questions: which
one of these should be used? The non-obvious answer is that you don’t have to



6.5 OVERRIDING EXECUTABLE LOOKUP

choose only one. A more elaborate answer would be that if the dependency you
need is available on the system, you should use that and if it is not, then you
can rebuild your own version as a subproject.

An implementation in Meson code would look something like this:

foo_dep = dependency('foo', version: '>1.2.0', required: false)
if not foo_dep.found()

foo_sp = subproject('foo', version: '>1.2.0')

foo_dep = foo_sp.get_variable('foo_dep')
endif

executable(..., dependencies: foo_dep)

This works nicely, but it is messy. There is a lot of typing and things like
the version requirement are duplicated. Since this is such a common operation,
Meson provides a shorthand syntax for this.

foo_dep = dependency('foo',
version: '>1.2.0',
fallback: ['foo', 'foo_dep'l)

This is the indirect way to invoke a subproject that was mentioned earlier.
The only thing that has been added is the fallback keyword argument. Its
value is an array with exactly two string arguments. The first one is the name
of the subproject to invoke. The second is the variable name holding the main
dependency object. The return value can be an internal or an external depen-
dency object, but the project does not have to care. It can just use the object
it was given.

This change simplifies and reduces the amount of code needed to use de-
pendencies. More importantly, it shifts the decision on which dependency to
use away from the build definition and makes the build definition more declar-
ative. Each project does not specify the steps to take to use a dependency. It
merely states its requirements for dependencies and lets someone else take care
of the lookup and decision logic. This allows Meson to, for example, add a com-
pletely new dependency lookup mechanism and have it automatically work on
all existing Meson projects without needing to change their build definitions at
all.

6.5 Overriding executable lookup

Some dependencies provide programs to run in addition to libraries. This is
most common for projects that provide source code generators. The concept

67



68

6 SUBPROJECTS AND INTERNAL DEPENDENCIES

of source code generation will be explained in detail in Chapter 11, but for the
purposes of this chapter we will only concentrate on executable lookup.
Picking between system and subproject provided executable manually is sim-

ple:

if <use subproject version>
sp = subproject(...)
dep = subproject.get_variable('dep')
exe = subproject.get_variable('exe')

else
dep = dependency(...)
exe = find_program(...)
endif

This is a lot of typing so the obvious solution to this would be to use the
same fallback mechanism to find_program as is used in dependencies. This will
not work.

dep = dependency(..., fallback: ['sp', 'dep'l)
# This does NOT work!
exe = find_program(..., fallback: ['sp', 'exe'l])

This is because find_program does not support fallbacks. The reason for
this is that executables work differently from library dependencies. It is entirely
possible to have a dependency executable installed on the system even though
the corresponding libraries are not. In that case the above declaration would
fail, because it would use the library dependency from the subproject but the
executable from the system. There is no guarantee that this combination will
work. At best it will cause a build failure and at worst creates programs that
have subtle but mysterious bugs.

Because of these reasons Meson provides a different way of getting executa-
bles that is based on overriding. Any project can call the executable override
function like this:

exe = ...
meson.override_find_program('exename', exe)

This changes Meson’s executable lookup logic so that this code:

exe = find_program('exename')

does not try to look up the executable from the system but instead immediately
returns exe as specified in the override command. The override value can be



6.5 OVERRIDING EXECUTABLE LOOKUP

any executable type, that is, an executable or a custom target or the output of
a different find_program call.

This works nicely and transparently for most projects but it adds one minor
limitation. If the overridden value is an executable target, then the result can
not be used in a run_command. It must execute the program immediately at
configure time, but executables are not built yet so they can’t be run. This is
only a limitation if you need to get some information out of the program during
configure time. This is rarely needed, as the most common thing to look up is
the program’s version number. The recommended solution is that it should be
looked up in the dependency object instead. It has native support for versions
so it is more reliable than string matching on an executable’s output.

As an additional safety feature Meson will ensure that all lookups for a given
executable name are the same across all subprojects. Thus any executable name
that has been successfully found can not be overridden any more. Similarly
trying to override an already overridden executable name is also prohibited.
Trying to do either of these will cause Meson to exit with a hard error.






Chapter 7
Configuring the project

A unique property of software is its near infinite flexibility. Almost any code
can be adapted to work on multiple different platforms and to interface with
many different libraries, frameworks and toolchains. Since all these systems
work in slightly (and sometimes not so slightly) different ways, a certain amount
of configurability becomes necessary. There are many drivers for configurability,
for example a multimedia processing library might need to have a way to disable
all algorithms that might infringe on patents. Users who either have a patent
license or who live in a country where software is not patentable can then enable
those algorithms with a command line switch.

Regardless of the reasons for any configuration it breaks down to roughly two
different steps. The first one is introspection where the build system determines
which features have been requested and what features are available on the cur-
rent system. This info allows it to decide what sort of configuration should be
used. The second step is to generate the configuration, which usually consists
of defining compiler flags and writing configuration files. Once this is done, the
actual build process can start.

7.1 Simple approaches to configuration

Some configuration choices are simple. If they match your needs then you should
consider using them if you can. In this section we look at some simple approaches
for project configuration and also outline their limitations and reasons you might
use the more complex configuration mechanisms listed later in this chapter.



72

7 CONFIGURING THE PROJECT

7.1.1 System detection in source files

This is perhaps the simplest of all configuration types. If your configuration
requirements are static and depend only on the operating system being used,
then you can put the logic directly in source files. A typical definition in C looks
like this:

#if defined _WIN32
#include<windows.h>
#elif defined __linux
#include<sys/inotify.h>
#else

#error Unknown platform
#endif

This would include the windows.h system header on all Windows platforms,
a Linux system header on Linux and would fail to compile on all other plat-
forms. This solution works for simple cases but has several downsides. It is not
particularly readable or user friendly. You also need experience to know all the
platform defines by heart when writing the code.

The second downside is that for many includes this approach gets very com-
plicated. You may need to do branching based on the platform, compiler and
even processor used. Decision trees like “if on linux and 32 bit processor or
macOS and 64 bit processor but not if the operating system is older than XX”
quickly become unreadable. Unfortunately many configuration choices do not
neatly follow operating system boundaries, which makes this a real world prob-
lem.

The third issue is that it adds to the work needed to port the software to a
new platform. Every one of these checks must be updated to deal with the new
platform. Porting always takes some work, so this is not such a huge issue, more
of an annoyance.

7.1.2 Platform specific files

In this approach configuration dependent code is put into their own files and
the build system is told to pick the correct one based on the system. Suppose
we have a function called do_something which requires a different implementa-
tion for each platform. Thus you would have files such as something-linux.c,
something-windows.c and so on and their contents would look like this:

#include<current_system_header>



7.1 SIMPLE APPROACHES TO CONFIGURATION

void do_something() {
/* Platform specific implementation here. */

}

Choosing the correct file would be done in the build definition:

sources = [...]

if host_machine.system() == 'linux'
sources += 'something-linux.c'

elif host_machine.system() == 'windows'
sources += 'something-windows.c'

else
error ('Unsupported platform.')

endif

executable('program', sources, ...)

This approach is more readable than the previous one but its other two
problems remain.

7.1.3 Compiler flags

The third approach works at a higher conceptual level than the other two. In-
stead of branching on system and compiler features it instead branches on the
desired option. Suppose we have a program that can optionally use an external
dependency foo if it is available. If not it will use its internal implementation
for the same functionality. The C file for this would look like the following:

#ifdef USE_FOO
#include<foo.h>

void do_something() {
/* Call into Foo. */
}

#else

void do_something() {

/* Own implementation here. */
}
#endif

73



74

7 CONFIGURING THE PROJECT

Choosing between these two is done in the build definition based on whether
the dependency is available.

foo_dep = dependency('foo', required: false)
if foo_dep.found()
use_args = ['-DUSE_F00']
else
use_args
endif

(]

executable(. ..
c_args: use_args)

This code will use the -DUSE_F00 command line switch during compilation
when the dependency is found. That causes the USE_F00 value to be set and
the compiler will include and use the external dependency. This example used
one file, but the parts could have been split in separate source files that are then
conditionally used just like in the previous section.

This approach is fairly nice and usable. Its major downside is that every
option adds a compiler flag. This can get unwieldy for projects with many
options.

7.2 Configuration files

The established solution for configuration is to write the options in a configu-
ration file, which is also called a configuration header in C-like languages. By
convention this header has been named config.h but this is no longer recom-
mended because development practices have changed. Nowadays it is common
to build many projects in one build step (see Chapter 6). Having many head-
ers with the same name may cause the wrong one to be included by accident.
A configuration header should therefore always have a unique name such as
<projectname>-config.h.

Meson provides many different ways of creating the configuration file, so
let’s start with the simplest one. Suppose we want to create a configuration file
sample-config.h that has one option that can have value 0 or 1. That is we
need to produce a file that looks either like this:

#pragma once

#define CONF_OPT O

or like this:



7.3 ADVANCED CONFIGURATION OPTIONS

#pragma once

#define CONF_OPT 1

This requires two things: a template file and configuration data. Also by
convention the template file’s name is the same as the resulting file’s name
followed by a .in suffix. In this case the file is called sample-config.h.in and
has the following contents:

#pragma once

#define CONF_OPT @CONF_OPT@

In order to generate the output file from the template, we need to tell Meson
that it needs to replace @CONF_OPT@ with either O or 1. This is accomplished
with the Meson function configure_file, which requires three inputs, namely
the input file name, the output file name and the values to set. Defining the
values is done with the configuration_data function. Combining these we get
the following piece of code.

cdata = configuration_data()
cdata.set ('CONF_OPT', 1)

configure_file(input: 'sample-config.h.in',
output: 'sample-config.h',
configuration: cdata)

You can also pass a dictionary object as configuration data and the behaviour
is identical. For the rest of this chapter we will use explicit data objects, though,
since they are a bit more convenient to work with.

To convert the template to the final file, Meson will go through it line by line
and look for words surrounded on both sides with @ characters. If that word
has been set in the configuration data object, it is substituted in the output file.
In this particular case Meson will find @CONF_0PT@ and replace it with either 0
or 1.

7.3 Advanced configuration options

Meson’s text substitution works only on tokens. It does not know anything
about the syntax or semantics of the files it processes. Thus it is the user’s
responsibility to ensure that the output is valid. Perhaps the most common

75



7 CONFIGURING THE PROJECT

issue that arises is defining strings in C-like languages, which need to be double
quoted:

#define A_STRING "Some text."

You can either put the quote marks directly in the template file:

#define A_STRING "@A_STRINGQ"

Or you can put the quotes in the string:

cdata.set('A_STRING', '"Some text."')

This works but it may look unaesthetic. As this is such a common operation,
configuration data objects provide a convenience function to set a value and add
double quotes transparently.

cdata.set_quoted('A_STRING', 'Some text.')

All three of these create the same output. Choosing between them is a
question of preference, however the last of these is the recommended one. It is
the most explicit and readable of the alternatives.

Configuration in C-like languages is almost always done through preprocessor
macros and definitions. It does not have a native concept of true and false, the
values 0 and 1 are used instead. Configuration data has a convenience function
also for this case:

cdata.set10('TOKEN', boolean_value)

This call sets the value of TOKEN to 0 or 1 if the argument is false or true,
respectively.

While this simple token based substitution works for most cases, there are
cases it can’t handle. Some projects require a token to be either set to some value
or not set at all. There may even be a need to remove any existing definition
of a token with the string #undef TOKEN. These can not be achieved with pure
token replacement, so Meson provides a more flexible configuration method. It
can be used by writing a line like this in the template file:

#mesondefine TOKEN

When Meson encounters this line, it will do a more complex substitution
based on the value and type for the given token. The full details are listed in



7.3 ADVANCED CONFIGURATION OPTIONS

Table 7.1: How a #mesondefine NAME is converted to the output for each sup-
ported input value type.

type sample value | output
string text #define NAME text
"text" #define NAME "text"
integer 42 #define NAME 42
boolean true #define NAME
false #undef NAME
undefined /* undef NAME */

Table 7.1. If we take the example earlier and want to have a token that is either
defined to a specific value or not defined at all, we would either set the value to
true or not define it at all. In the first case the declaration will be transformed
to this:

#define TOKEN

In the other case it would be expanded to this:

/* undef TOKEN */

which is a comment and thus a no-op.

The final convenience method we shall look into is generating an output file
without a template. Adding new configuration options to the build requires
modifying two different places: the template file and the configuration data
object. Most configuration files only have #mesondefine lines in them so it
would be convenient to be able to define everything in one place.

This is done by omitting the input keyword argument from configure_file.
This will cause Meson to generate the file automatically based only on values
defined in the configuration object. It will iterate over all set values in the object
and write them out to file as if there was an input line with a #mesondefine for
the token in question.

Thus if you have defined the configuration like this:

cdata = configuration_data()
cdata.set ('DEFINE_ONLY, true)
cdata.set ('SOME_NUMBER', 1)

7



7 CONFIGURING THE PROJECT

configure_file(output: 'sample-config.h',
configuration: cdata)

The final generated file would look like this:

#pragma once
#define DEFINE_ONLY

#define SOME_NUMBER 1

Sometimes you want to provide comments for options. Every set method in
the configuration data takes a description keyword that can be an arbitrary
string. It will be written as a comment above the actual value. The output of
this declaration:

cdata.set('TOKEN', 1,
description: 'Some descriptive text here.')

would look like this:

/* Some descriptive text here. */
#define TOKEN 1

7.4 Introspecting the system

Typical things to write in a configuration file include the program’s version
number as a string and install paths for looking up resource files on install.
They are just pieces of information that the program can use directly. There
are usually only a couple of these in each project. More common configuration
settings are things that enable or disable some functionality or code paths.

Let’s take the example from earlier where we have a project that can use
an external third party library or its own implementation. Typically the third
party library is more performant, but not available on all platforms. Setting up
the configuration for this starts by searching for the dependency and generating
a corresponding configuration header:

cdata = configuration_data()
ext_dep = dependency(..., required: false)
cdata.set10('USE_3RDPARTY_LIB', ext_dep.found())



7.4 INTROSPECTING THE SYSTEM

configure_file(...)

The configuration file template has this declaration:

#mesondefine USE_3RDPARTY_LIB

When the library is found the generated header will look like this:

#define USE_3RDPARTY LIB 1

If the library is not found, the value is 0 instead of 1.
The implementation source file has both the external and internal definitions
and choosing between them is done with the #if preprocessor define.

#include<configuration-header.h>
#if USE_3RDPARTY_LIB
#include<3rdparty.h>

int functionality(int argument) {
// Implement the functionality by calling the
// external library.

#else

int functionality(int argument) {
// Implement the functionality with
// self written code.

}

#endif

Storing both implementations in one file is convenient but not mandatory.
You can also put the implementations in different files, and only add one of them
in the target’s list of sources. This is recommended especially if the implemen-
tation contains a lot of code. Navigating source files with many #ifdefs is not
pleasant.

Unfortunately splitting functionality into different files like this is not al-
ways possible. Let’s take the concept of event driven I0. Linux provides three
different functions for that, select, poll and epoll, which are defined in head-
ers sys/select.h, poll.h and epoll.h, respectively. Other platforms provide

79



80

7 CONFIGURING THE PROJECT

some, but not all, of them and they might be defined in headers with different
names, such as plain select.h.

Trying to write an #ifdef declaration that works on all these platforms
is difficult and the result is usually unreadable and undebuggable. Worse, it
might not even be possible to write such a declaration fully inside the source
file. Operating systems add functionality all the time. Simply checking if the
operating system used is Linux is not enough, because some versions of Linux
might provide the header while older ones do not. On some systems the headers
are there and can be used, on other systems they are not.

The only reliable way out of this is not to inspect what platform we are
currently running, but instead test if the header itself is available. This can
not be done from within a source file, because trying to include a non-existing
header is a hard error. This test must be done within the build system during
the configuration phase.

Meson has native support for compilation checks. They are done with the
compiler object that is obtained from the main meson object. Taking the select
example from above, here’s how one would check the existence of the two different
headers.

cc = meson.get_compiler('c')

cdata = configuration_data()

cdata.set10('HAVE_SELECT_H',
cc.has_header('select.h'))

cdata.set10('HAVE_SYS_SELECT H',
cc.has_header('sys/select.h'))

The established naming practice for header tests is to start the token with
HAVE_ followed by the header name with slashes and periods replaced by under-
scores. The tokens are written in all upper case as is common with C preprocessor
definitions.

The implementation file can now include the correct header regardless of how
it is provided by the system.

#include<configuration-header.h>

#if HAVE SELECT H
#include<select.h>
#endif

#if HAVE_SYS SELECT H
#include<sys/select.h>
#endif




7.5 PRINTING STATUS MESSAGES

This layout is a lot more readable as there are no nested if conditions.
The compiler object provides many more compilation checks, such as existence
of functions and types, sizes of structs and whether a struct provided by the
system has an element with the given name in it. A full list of system intro-
spection checks can be found in the compiler object’s reference documentation
in Section 18.3.

7.5 Printing status messages

As configuration choices are done, one usually wants to print some sort of status
messages so the developer can easily see how the system has been set up. Thus
far we have used the message function to print informal textual messages. This
works, but only for simple use cases. Since the output of message is printed
immediately, it is easy to lose important messages among the rest of them. It
also does not provide easy alignment of items over multiple calls.

Since this is a common need, Meson provides a mechanism for printing sum-
mary status reports. This is accessed through the function called, unsurprisingly,
summary. It has a simple data model that consists of sections containing multi-
ple key—value pairs. The summary function can be called at any time and Meson
will store the given message internally without printing it. Once configuration
has successfully finished, all summary messages are printed.

The behaviour is perhaps easiest to understand with an example. Suppose
we have a meson.build file that looks like the following.

project('DemoProject', 'c', version: '1.0')

summary ('mainloop', 'glib')
summary ('queue_length', 42)

Executing it would produce the following summary output at the end of the
configuration run.

DemoProject 1.0

mainloop: glib
queue_length: 42

All summaries are printed under the main project and are pretty-printed.
Once the project grows more complicated, you probably want to split the options
under different headings. This is done with the section keyword argument..

81



7 CONFIGURING THE PROJECT

project('DemoProject', 'c', version: '1.0')

summary ('mainloop', 'glib')
summary ('length', 42, section: 'queue')
summary ('threadsafe', false, section: 'queue')

The output of this project looks like the following.

DemoProject 1.0

mainloop: glib

queue
length: 42
threadsafe: False

The key values to be printed can be strings, integers, booleans or arrays of
same. For example a declaration like this:

summary ('plugins', ['dummy', 'validator', 'performance'])

produces the following output.

plugins: dummy
validator

performance

Sometimes it is more convenient to define summary messages to be printed
with dictionaries. If you already have one that you use for other purposes (such
as defining targets with a foreach loop), then printing it with summary can be
done like this.

queue_status = {'length': 42,
'threadsafe': false}
summary (queue_status, section: 'queue')

This leads to the same output message as earlier.

queue

length: 42

threadsafe: False

Like with individual function calls the heading argument is optional. If it is
not defined, the dictionary values are put under the project heading.



7.5 PRINTING STATUS MESSAGES

project('DemoProject', 'c', version: '1.0')
toplevel = {'mainloop': 'glib', 'queue_length': 42}
summary (toplevel)

This produces the same output as the first example.

DemoProject 1.0

mainloop: glib
queue_length: 42

As a final point Meson will keep track of summary calls made in subprojects
and print them clearly separated. First all subprojects’ summaries are printed
one by one and finally the master project is printed. Output from different
projects is never intermixed.






Chapter 8
Testing

Testing is the foundation on which reliable software is built. Without good
tests it is impossible to know if your program behaves correctly. Even more
importantly you can’t tell it if will keep on working in the future as the code
and the world around it change. A good test suite is fundamental in increasing
developer productivity and by extension development velocity. This may seem
counter-intuitive!, because writing tests does take some time. However the time
spent on tests is almost always recovered in decreased debugging time before the
project is shipped.

Meson provides a comprehensive set of features and tools to define and run
tests. They have been designed to be easy to get started with, but to provide
flexibility and power for advanced use cases.

8.1 Defining a test

From a build system perspective the definition of a test is straightforward. A
test is an executable whose return value defines whether the test succeeded or
failed. A value of zero means success and any other value means failure. There
are a few exceptions to this rule, which are described in Sections 8.2.4 and 8.2.7
but those are only for special cases.

A simple C program that works as an ersatz test looks like this:

#include<stdio.h>

int main(int argc, char *xargv) {
printf ("This is a message to stdout.\n");

1Especially to managers without first hand development experience.



36

8 TESTING

fprintf (stderr, "This is a message to stderr.\n");
return O;

}

The program itself only prints some text to both standard out and standard
error and then exits with an error code of zero. This means it will always be
marked as passing. A real world test program would have more code and return
a non-zero value from main in case of any test failed.

In Meson tests are defined with the test command. A full definition fits in
three lines of text:

project('simple test', 'c')
exe = executable('simple', 'simple.c')
test('simple', exe)

The first line contains the standard project definition. The second line
creates an executable from a single source file. The third line contains the test
declaration, which in its simplest form contains only two arguments: the name
of the test and the executable to run.

Tests are run by invoking the test target. This runs runs all tests, collectively
know as the test suite. The test runner prints status messages to the console as
tests are executed.

$ ninja test

[0/1] Running all tests.
1/1 simple

Ok:

Expected Fail:
Fail:

Unexpected Pass:
Skipped:
Timeout:

Full log written to <<buildroot>>/meson-logs/testlog.txt

The test runner output consists of two parts. First we have one line of text
for each test executed with five pieces of information: the test number, the test’s
name, exit status and the time it took to run the test. These lines are printed
as soon as the test has been run. The second piece of information consists of
the aggregate status of all tests run. The four different categories are:



8.1 DEFINING A TEST

Ok The test was run successfully.

Expected fail This test executable has been marked as should fail, meaning
the test is considered successful if it returns an error, which this test has
done. Failing tests are described in Section 8.2.7.

Fail The test returned an error status.

Unexpected pass This is a test that should have failed when run but instead
returned successfully. This is considered an error, just like a regular test
returning an error code.

Skipped The test reported that it could not be run but that it should not be
considered a failure, see Section 8.2.4 for details.

Timeout The test took too long to run, so the test runner mechanism killed it
and marked it as a failure, see Section 8.2.5 for details.

The return value of the test runner is the number of tests that failed during
the run. This means that the test runner behaves just like any other test: it
returns a zero upon failure. This makes it easy to integrate with continuous
integration (CI) systems like Jenkins or Buildbot.

When all tests pass, this is usually all the information you need. When
things fail, debugging ensues. Most tests write the reason why tests have failed
to standard output or error. Meson captures both of these when running the
tests and writes them to the file meson-logs/testlog.txt in the build directory.
The file contains a lot of general data about the test run and also specific data
about each individual test.

The general information is fairly noisy, so let’s look just at the information
specific to the simple test.

1/1 simple

—--— command ---
<<buildroot>>/simple

--— stdout --—-

This is a message to stdout.
--- stderr --—-

This is a message to stderr.

As you can see the information is fairly easy to extract. There are three
pieces of information that are of interest. The first is command, which is the
command line used to run the test process. The second is stdout containing all



38

8 TESTING

text that the process wrote to standard out, and stderr, for all text written to
standard error. Using this information it is usually easy to pinpoint the exact
reason for a failing test.

8.2 Test properties

8.2.1 Command line arguments

Most unit tests are self-contained, that is, they can be run directly and they
require no external input. The rest require either access to some test files or
command line arguments to function properly.

A test can be given command line arguments with the args keyword argu-
ment. Its value is an array that can contain strings, build targets or any mixture
thereof. Strings are passed to the command line as is.

test('arg_test', some_exe,
args : ['--test-mode'])

This test would run the given program and give it the one specified com-
mand line argument. Build targets are handled specially, they are transparently
expanded to paths that point to the target’s output file.

module_opener = executable(...)

module = shared_module(...)

test('module', module_opener,
args : [module])

This means that the developer does not need to manually build paths to
build outputs, the system will handle them automatically.

8.2.2 External test programs

Most test binaries are executables built with the executable command, but
that is not mandatory. The test executable can also be any executable found
with find_program. One typical case is to have a custom script that validates
that the source code is formatted according to the project’s custom style.

test_script = find_program('format_validator')
test('format_check', test_script,
args : [meson.source_root()])




8.2 TEST PROPERTIES

This snippet finds the validator script (most likely from the current source
directory). Then it defines a test that passes the top of the source tree as a
command line argument to the script. This is all the script needs to do its task.

The test program can also be an external program. There are many third
party test and validator tools available. They are used in the same way as
above, except that the build definition should be written so it can be run even
on machines where the external tools are not available.

third_exe = find_program('external_test_program',
required : false)
if third_exe.found()
test('thirdparty test', third_exe)
endif

8.2.3 Environment variables

Some tests require setting environment variables to specific values. This is more
difficult than setting command line arguments, since sometimes simply overrid-
ing a value does not work. Instead what you need to do is to add new data to an
existing variable. A common example is the PATH environment variable. Setting
it to a specific value makes all system executables inaccessible. Sometime you
may want this, but most of the time you want to append new path entries after
the existing ones.

The main tool for defining environment variable setups is the environment
function. It is similar to the configuration object as presented in Section 7.2
and it is used in a similar way. First you create an object, then you set values
in it one by one and finally use it as a keyword argument in a test definition.

Suppose you have a test that requires the following environment variable
settings:

1. Set the value of TMPDIR to current build directory.
2. Append the value /usr/local/bin to PATH.
3. Prepend the current source directory to XDG_DATA_DIRS.

This is be achieved with the following piece of code:

env = environment ()

env.set ('TMPDIR', meson.current_build_dir())

env.append ('PATH', '/usr/local/bin')

env.prepend ('XDG_DATA_DIRS', meson.current_source_dir())
test('envvartest', test_binary,



90

8 TESTING

env : env)

All methods on the environment variable object take an optional separator
keyword argument. It specifies the character that will be used to join the strings.
It defaults to the platform’s default separator character which is ; on Windows
and : on all other operating systems. A detailed description on how the different
methods are interpreted w.r.t. existing environment variables can be found in
Table 18.1 on page 214 in the reference section.

8.2.4 Skipping tests

Usually when a test can not be run, a reasonable solution is to not define it at
all. The most common case is a test that run only on one operating system. It
makes little sense to try to run (or even compile) Linux specific tests on Windows
so leaving them out is the right thing to do. Sometimes things are trickier and
you can only detect that a test can not be run when executing the test.

Typically these problem cases have something to do with the runtime prop-
erties of the current operating system or hardware. Suppose for example that
you want to create an executable that uses advanced SIMD instructions, such
as AVX, if they are available but gracefully falls back to a software implemen-
tation on processors that do not support the given extensions. It is possible to
compile source code with AVX support on any processor, but if the compilation
machine’s CPU is too old, the AVX code path can not be tested. Marking the
test as passed in these cases would be misleading, since the test has not actually
been run.

Instead of passing, the test should be marked as skipped. This makes the
result clearly visible in aggregate statistics. Tests are marked as skipped if they
exit with a return code of 77. This may seem strange and arbitrary, but it is an
old established Unix tradition?, which Meson follows to maintain compatibility
with existing projects.

8.2.5 Timeouts

Each test is given a certain amount of time to run, by default 30 seconds. If
a test takes longer than that to for whatever reason, the test suite runner will
unconditionally kill the test process and mark the test as failed.

30 seconds was chosen as the default value as a compromise. It is long enough
that almost all tests should have enough time to pass. If your tests hit this limit,
they are probably too big and/or doing too much so you might consider splitting
them into separate parts. Sometimes there are cases when this can not be done,
such as tests working on large data sets.

2In fact for many people strange and arbitrary and Uniz tradition are synonymous.



8.2 TEST PROPERTIES

In these cases you need to increase the timeout value, which is done with the
timeout keyword argument.

test('slow_test', exe, timeout : 60)

This slow test would have 60 seconds to run before it is killed by the system.
Sometimes you may need to alter the timeout value of all tests rather than

just one. This can be done by invoking the test runner with custom arguments
which will be described in Section 8.3.5.

8.2.6 Parallel tests

Meson differs from many classical test runner environments by being parallel by
default. Tt uses all the compute power on the test machine automatically. What
this means in practice is that if your machine has n processors, Meson will run
n test executables in parallel. Most of the time the only thing visible to the end
user is that their test runs finish faster.

There are cases where automatic parallelisation is harmful. The first consists
of tests that use multiple threads or processes internally. These tests typically
scale themselves to use all processors on the machine. If you have several of
these running at the same time they will end up fighting for resources, which
causes slowdowns and eventually killing of all test processes due to timeouts.

The second group of tests require exclusive access to some unique resource.
Typical cases include running a server on a socket with a specific port number,
owning a specific service name on DBus or having exclusive access to a specific
file on the file system. Running two of these tests at the same time would cause
test failures. Either one of the tests fails immediately because it can not get the
unique resource, or both of the tests think that they own the resource but don’t.
During tests the inputs and outputs of these tests can get randomly intermixed
leading to very confusing debug sessions.

Meson’s way of avoiding these issues is that you can mark a test as nonpar-
allel.

test('noparallel', exe, parallel : false)

When this test is being executed, Meson guarantees that no other test process
is running at the same time. The downside is that this slows down the test suite
since only one test is being run. Because of this, tests should be marked as
non-parallel only when strictly necessary. Often it is possible to refactor the
code to be more testable so it can be run in isolation and thus in parallel with
other tests.

01



92

8 TESTING

8.2.7 Failing tests

Sometimes failure is not only an option, but the expected outcome. Suppose
you are writing a file format parser and want to verify that it does not accept
malformed files. In these cases the parser program should exit with an error. If
the test program were to return successfully it would mean incorrect behaviour.

Test programs that are expected to fail can be declared with the should_fail
keyword argument.

test('failing test', executable,
should_fail: true)

In this case the test is marked as passed if the program’s exit code is not
zero. This check only applies to the pass/fail status of the test. This presents an
additional problem, because test executables can be run both as regular tests and
as failing tests. A test executable does not know how it is being run, but there
are cases where it would need to report failure regardless of how it is being used.
If the program detects that its internal data structures have become corrupted,
it should be able to signal a fatal failure. This can be done by exiting with the
return code 99. It is always interpreted as a test failure regardless of whether
the test has been marked as should fail or not.

If the program has an exit code of 77 it will be marked as skipped and if it
takes longer to execute than the timeout value, it is marked as failed due to a
timeout.

8.2.8 Changing the working directory

By default Meson makes no guarantees about where the program is being run
from. Different backends have different layouts. If you need to ensure that a
specific test is run from a specific directory, you can specify this with the workdir
keyword argument.

test ('workdirtest', executable,
workdir: meson.current_source_dir())

This keyword argument should be needed only rarely, usually by tests that
expect to be run at the root of a directory tree containing test data. Most tests
should be written so that they can be run from any directory, that makes them
easier to run manually when debugging. Those that do not can be refactored to
take the path as a command line argument.



8.3 ADVANCED TESTING USING THE TEST TOOL

8.3 Advanced testing using the test tool

All testing thus far in this chapter has been done with the default test target
that can be invoked from the backend. This is simple and straightforward but
also fairly limiting. Meson ships with a testing tool that has many options and
features for advanced testing scenarios.

The test program can be run with meson test. Running this command in
the build directory is equivalent to running ninja test. It will make sure that
the build directory is up to date (equivalent to ninja all) and then run the
default set of tests.

8.3.1 Skipping the rebuild step

One of the main goals of Meson is reliability. This is why it always ensures that
the code is always built and up to date. There is nothing quite as frustrating
as debugging code for a long time only to realise that the executable you are
running is stale. Building everything can take a lot of time, though, so sometimes
you may explicitly tell Meson not to rebuild the code, but just run the tests.
This is achieved with the -—no-rebuild command line argument.

$ meson test --no-rebuild
1/1 simple

Ok:

Expected Fail:
Fail:

Unexpected Pass:
Skipped:
Timeout:

Full log written to <<builddir>>/meson-logs/testlog.txt

8.3.2 Running individual tests

The simplest, and possibly the most commonly used, feature is to run only one
or few tests rather than all of them. This can be achieved by listing the test
names you want to run as command line arguments. Suppose you have a project
that has ten tests named testO, testl, ..., test9. If you wanted to run only
tests 3 and 7, you'd run Meson test like this:

93



94

8 TESTING

$ meson test test3 test7

8.3.3 Utilising test suites

As the number of tests in a project grows, it often becomes too slow to run every
test on every change. For example you might have a subset of tests that deal
with data parsing, a different (but not disjoint) set for database communications.
There may even be a bunch of tests that are slow to run and you’d want to
execute all tests except those.

All of these use cases can be handled by arranging tests into suites. This
can be achieved by specifying one or more free form text labels using the suite
keyword:

test('parse_and_db', exe,
suite : ['parse', 'database'])

This test has been tagged to be part of the parse and database test suite.
By default tags do nothing, they are only looked at when the —-suite argument
is used. The following command runs only tests that are part of the parse suite:

$ meson test --suite parse

You can also specify multiple suites.

$ meson test --suite parse --suite database

This would run tests that are in suite parse or database or both.

There is also a corresponding --no-suite that runs all tests except those
that are part of the specified suite.

$ meson test --no-suite slow

These two switches can be used at the same time and their effects are cumu-
lative. To execute all tests in the parse suite except those that are also tagged
as slow you would use the following command.

$ meson test --suite parse --no-suite slow



8.3 ADVANCED TESTING USING THE TEST TOOL

8.3.4 Test executable wrapper

There are many third party tools that can be used for improving and enhancing
the results of tests. Perhaps the most known of these is the Valgrind [16] family
of tools. They work by running an executable in a virtualisation environment
looking for common programming errors, such as buffer overflows.

Valgrind and other such tools are simple to use. Rather than running
testcommand -arg, you run valgrind testcommand -arg. That is, adding the
inspection tool’s binary to the test command is all that is needed. Meson’s test
tool has the --exe-wrapper command line argument for this.

$ meson test --exe_wrapper=valgrind

This command runs all tests but invokes them via Valgrind. The wrapper
argument is split according to regular shell rules, so if you need to pass command
line arguments to the Valrind command invocation, you have to put them in
the same argument. Many programs have spurious warnings when run under
Valgrind that can be ignored with a suppression file specified as a command line
argument to Valgrind.

$ meson test --exe_wrapper='valgrind --suppressions=supp_file'

8.3.5 Timeout multiplier

The big downside of wrapper tools is that they slow down the tests. A typical
factor is 10x, but slowdowns up to 1000x are not unheard of. That causes every
test to fail due to a timeout. Since manually editing the build definitions to in-
crease the timeout values would be impractical, Meson allows you to temporarily
increase the timeout value on all tests.

$ meson --timeout-multiplier=100

In this case all timeouts are 100 times as long as specified in the file. That
is, if a test has the timeout value of 5 seconds, with this flag it would be 500
seconds, or just over 8 minutes.

8.3.6  Other arguments

In addition to the major features discussed above, meson test has a bunch of
minor features and options that do not warrant a section each, but which are
very useful.

95



8 TESTING

The first is the flag to control the maximum number of processes running at
the same time. This value defaults to the number of CPUs on the machine but
can be set explicitly with an argument like ——num-processes=4.

Some test failures are sporadic, that is, they only happen every now and then.
If you fix one of these bugs it is difficult to prove that problem has truly been
eliminated. The only reasonable approach is to run the tests sufficiently many
times. This can be achieved with the --repeat command line argument that
takes a number, such as 1000, and runs the test suite as many times a specified.

The final argument is -—gdb which runs each test under the GNU debug-
ger [17]. If the test crashes, the developer is dropped to GDB’s command shell
and they can debug the crashed program. Because debugging sessions can take
an arbitrary amount of time, timeouts are disabled while using GDB mode. This
argument becomes even more useful when combined with the previous one like
this:

$ meson test --repeat=10000 --gdb sporadic_fail_test

This invocation would run the failing test 10 000 times under gdb. Once
invoked the test can be left running in the background, possibly overnight. The
full run will either pass or end up with a debug session at the exact point of the
crash.

8.4 Defining custom test setups

The command line tool is useful for experimenting with testing options. Once
you find a combination of settings that works for your project you may want to
store them for later usage. An age-old Unix solution is to write a shell script
with your commands and store that in your project. Meson provides a simpler
way of storing this information directly in your build definition file as a test
setup.

supp_file = meson.current_source_dir() / 'my_suppressions.txt'

add_test_setup('valgrind',
exe_wrapper: ['valgrind',
timeout_multiplier : 1000)

'-—suppressions=' + supp_file],

This defines a setup named valgrind that runs all tests under Valgrind. The
keyword arguments are the same as the command line arguments to the tester
program (with the exception that commands are arrays in Meson but strings in
the shell). The testing system does not guarantee which directory the tests are
run in, so we build an absolute path to a suppression file in the current source
directory. This setup would be used like this:



8.5 BENCHMARKS

$ meson test --setup=valgrind

In addition you can also specify environment variables to set as well as the
use of gdb.

e = environment ()
e.set ('EXTRA_VALIDATION', '1')
add_test_setup('strict_gdb',
env: e,
gdb: true)

8.5 Benchmarks

All tests discussed thus far have been about verifying the correctness of the
problem. Either all tests pass, and the program is presumed correct or one or
more of them fail proving the program broken. This is only one slice of the
testing pie. A different, but just as important, part is performance.

From Meson’s point of view, benchmarks and regular tests are almost iden-
tical. They are defined and run in a similar way. The major difference is that
Meson will run not run benchmarks in parallel. Defining benchmarks is simple:

benchmark ('speedcheck', exe)

The benchmark command takes all the same keyword arguments as test.

$ ninja benchmark
1/1 speedcheck

OK: 1
FAIL: 0]
SKIP: 0]
TIMEQOUT: 0

Full log written to <<builddir>>/meson-logs/benchmarklog.txt

Running benchmarks with the test tool is equally simple.

$ meson test --benchmark

All command lines arguments that were used with tests can also be used with
benchmarks and they behave in the same way.

97






Chapter 9
Installing

Getting a project configured, built and tested is a good start. However a program
that only runs on your own computer is not as useful as one that can be given out
to other people to run on their machines. The process of taking a built program
and all its data files, separating it fully from the source code and turning it into
a self contained application is called installation. The end result is a package or
bundle of some type that can be deployed on other machines. Confusingly the
task of deploying a bundle is also called installing. In this chapter we will only
deal with the first type of installation.

9.1 Directory layout

Perhaps the biggest individual task of installation is one of file layout. Source
code trees, and thus by extension build tree layouts are usually optimised for
development convenience. The file layout of applications is conversely optimised
for running and deployment. Installation takes files in one layout and converts
them to the other.

Every platform has its own recommended (or mandated) file layout. The
most common are the classical Unix layout, the macOS application bundle layout
and Windows application layout.

9.1.1 The Unix layout

The file layout used on most Unix systems today comes pretty much unchanged
from the original Unix file system hierarchy defined in the 1970s. It is based
on a hierarchical directory tree with specific directories. Ignoring certain low
level system programs, everything gets installed under the /usr directory. This
is called the installation prefix. Everything else in the installation is defined



100

9 INSTALLING

filesystem root

bin < executables
include
example ¢ headers

< Tlibraries

1ib
share
example ¢ resource data

Figure 9.1: The most common install directories required on a Unix platform by
an application called example.

relative to this prefix. The advantage of this is that it becomes easy to install
the program in a different location simply by changing the prefix. A typical
alternative prefix is /usr/local. On Linux systems this directory is seldom
used, but on the other hand on systems such as FreeBSD everything not part of
the core system is installed under /usr/local. A well behaved program should
work regardless of the installation prefix. For the rest of this chapter, we are
going to assume that prefix has been set to /usr unless otherwise specified.

Within the installation prefix are many directories each of which is meant for
specific types of files. The most common directories can be seen in Figure 9.1.
The only directory that applications own completely and can use for any type
of file they want is the resource directory under share.

Unix installations are static and read only. That is, once files have been writ-
ten in the directory tree they can not be changed any more. Data that changes
at runtime needs to be stored elsewhere, usually in the user’s home directory.
Most unix systems, especially Linux, do not install files in /usr manually but
with a dedicated piece of software called a system package manager. This sys-
tem takes care of installing and uninstalling packages safely, as changing the
root file system of a running computer is a risky proposition. Package managers
have other tasks as well, such as ensuring that all dependencies of a program
are available before installing the app. Some of the most known system package
managers include apt, dnf and zypper.

Installing everything in the system root directories has both advantages and
disadvantages. Perhaps the biggest downside is that an application built on one
Linux distribution can usually not be run on any other distro or even a different
version of the same distro. A recent trend has been to move applications away
from distro packages and to instead provide self contained application bundles
that can be run on all conforming platforms. Most of them work by using



9.1 DIRECTORY LAYOUT

example.app

Contents

Mac0S < executables and libraries
Resources < resource files
Info.plist < bundle definition file

Figure 9.2: A directory layout for a macOS application bundle.

operating system kernel functionality to create a containerised file system that
can be run in isolation. The most adopted solution at the time of writing is
Flatpak [12]. Any project that supports installing to an arbitrary prefix will
automatically work with these systems.

9.1.2 The macQOS app bundle layout

Apple’s macOS is a Unix system at its core but it behaves very differently from
other unixes currently in use. Users are very strongly advised not to install
anything to the system directories. Instead all applications should be provided
as self contained application bundles. A bundle is really nothing more than a
directory tree of files in a specific format. The operating system will detect
bundles and show them to the user as an application that can run. The basic
file layout of an app bundle can be seen in Figure 9.2.

There are two things here that make the operating system treat this directory
tree as an application. The top level directory name must have the suffix .app
and a file called Info.plist must be in the Contents subdirectory. If both
of these conditions hold true and the file is in the required XML format the
directory works as an application. You can, for example, start it by double
clicking on it. This setup is typical for application bundle formats in general.
Most of them consist of an archive of files and a magic file identifying the archive
as an application bundle.

The sample project places all binaries in the Contents/Mac0S directory. For
executables this is mandatory but for libraries it is done merely for convenience.
More complex projects would need to set up frameworks and other constructs
in the specific format and layout specified by the operating system.

The Resources directory holds data files and corresponds to share/example
directory on Unix. Certain files must be in this directory according to very
specific rules. Application private data, such as textures in games, can be placed
in the directory in an arbitrary structure. The exact rules depend on the platform
so you should always refer to documentation provided by the operating system

101



102

9 INSTALLING

Table 9.1: Install locations for executable example if prefix is /usr and bindir
is bin.

type value | install location

not defined /usr/bin/example

relative path | sbin | /usr/sbin/example
absolute path | /sbin | /sbin/example

vendor for specific layout rules in bundles.

9.1.3 The Windows application layout

The classical Windows application model could affectionately be called the bag
of files model. There are no specific requirements, so a common approach is to
put all files in a single directory with possibly a subdirectory or two for assets.

The only real requirement that Windows has is that executables and shared
libraries, called DLLs, must be in the same directory in order to be runnable.
They can, in theory, be put in separate directories but that complicates things
for no real benefit.

9.2 Installing build targets

By default Meson does not install anything. Build targets can be installed with
the install keyword.

executable(..., install: true)

This will install the target in the system default directory for the given file
type. Specifically executables will be installed to the directory pointed to by the
option bindir and libraries are installed to path pointed to by the option 1ibdir.
Every function that generates output has an install keyword argument that
can be used to install the result. Thus it is easy to see at a glance whether some
target is installed or not.

These other target types may additionally require the install_dir keyword
argument specifying the install destination. The same argument can also be
given to build targets to install them in a non-standard directory. The final in-
stall locations corresponding to different types of values can be seen in Table 9.1.

The path behaviour is the same on all install targets. If the install directory
is undefined, then the system default is used. Relative paths are interpreted to
be relative to prefix and absolute paths are used as is.



9.3 INSTALLING OTHER FILES

9.3 Installing other files

In addition to build targets one often needs to install resource files as well. A
computer game might have textures, 3D models and music, whereas an office
suite might have template documents. Meson provides two functions for in-
stalling files, install_data and install_subdir. In addition there is a helper
function install_man for installing man pages, but it will not be discussed in de-
tail. Those interested should look up reference documentation in Section 19.30.

The simpler of the remaining two functions is install_data. You give it a
list of files and the path to install them into.

# Both files go to /usr/share/mygame
install_data('skin.png', 'wizard.mdl',
install_dir: 'share/mygame')

Note that path segments in input file names are dropped on install.

# Even now both files go to /usr/share/mygame

install_data('graphics/skin.png',
'models/wizard.mdl',
install_dir: 'share/mygame')

Writing out install commands by hand gets tedious once you have more than
a couple of files to install. The common solution to this is to set up project
file layout so that resource files are in the same layout as they will be in the
final install location. Then you can install the entire subtree in one go using
install_subdir.

# Assuming a file tree like this in your project tree:
#

# resources
#  graphics

# skin.png

# models

# wizard.mdl
# sounds

# casting.mp3

# The output of this:
install_subdir('resources', install_dir: 'share/mygame')

103



9 INSTALLING

# Will end up like this

usr
share
mygame
resources
graphics
skin.png

models
wizard.mdl

sounds
casting.mp3

104

H OH H O H H H R HH

A common use case is that you need to install the subdirectory but without
the top level resources segment. That is, so that the graphics directory is di-
rectly in the mygame directory. This can be achieved with the strip_directory
keyword argument.

install_subdir('resources',
strip_directory: true,
install_dir: 'share/mygame')

# Will look like this:

usr
share
mygame
graphics
skin.png

models
wizard.mdl

sounds
casting.mp3

H oH O H H HH H HH

9.4 Running the install

Install is initiated by invoking the install target. With the Ninja backend this
is done by calling ninja install.



9.4 RUNNING THE INSTALL

$ ninja install
Installing libstat.a to /usr/lib

Installing prog to /usr/bin

Meson sets up proper dependencies so that the build is always up to date
before the install step is run. If the code can not be built, Meson will exit with
an error and no install steps are run. This ensures that you don’t install stale
or broken code by accident.

The default target does the right thing most of the time. Like with test-
ing, Meson provides a richer install command that can be invoked with meson
install. By default it does the same thing as basic install but it also accepts
two command line arguments. The first is ——no-rebuild which merely runs the
install without verifying that everything is up to date. If you use this argument
it is your responsibility to ensure that everything is up to date.

The second argument is -—only-changed. By default Meson will copy every
file to be installed. If there is already a file with the same name it will be replaced
unconditionally. If the project has lots of large data files then incremental install
commands are as slow as the first one. This command line argument changes
the install behaviour so that files will only be overwritten if their file system
timestamps are older than the source file being copied. In practice this means
that consecutive install commands will only copy over files that have changed
since the previous install.

9.4.1 Staging installs with DESTDIR

Install places files in their final runtime locations, such as /usr/bin for executa-
bles. This is problematic because on most platforms you are not permitted to
write files in system directories. Files may only be installed in those directories
using packages. Thus you need to first install the files in some staging directory,
convert the contents of that directory into a package and then install the result.

A straightforward solution would be to set up the prefix so that it points
to the staging directory rather than the actual system. A potential value of
prefix using this scheme would be /tmp/staging/usr. This is not recommended
because it fails quite badly when resource files enter the picture.

An established practice in Unix sofware development is to store the install
prefix and possibly the project’s data directories inside the executable itself
as discussed in Chapter 7. This would cause the programs to look up files
from the staging directory (/tmp/staging/usr/share/program) rather than the
actual system directory (/usr/share/program) at runtime meaning none of the
resource files would be found.

Fixing this issue requires some mechanism where projects are configured

105



106

9 INSTALLING

Table 9.2: Environment variables set when running install scripts.

name type sample value
MESON_SOURCE_ROQT path to source root /path/to/source
MESON_BUILD_ROOT path to build root /path/to/build
MESON_INSTALL_PREFIX installation prefix /usr
MESON_INSTALL_DESTDIR_PREFIX | full install location /tmp/staging/usr
MESON_INTROSPECTION introspect command | meson introspect

with their final runtime prefix but get installed into a completely different stag-
ing directory while preserving the same directory tree layout. The established
standard way of doing this is the DESTDIR environment variable, which all install
tools are expected to obey. The variable defines an absolute path segment that
should be prepended to the output name of all installed files.

The environment variable can be set in the standard Unix shell way.

$ DESTDIR=/tmp/staging ninja install
[0/1] Installing files.

Installing libstat.a to /tmp/staging/usr/lib
Installing prog to /tmp/staging/usr/bin

9.5 Custom install tasks

There is more to installation than copying files. Since these steps are usually
highly project-specific Meson does not attempt to provide functionality for all
possible things. Instead it provides a way to run custom installation scripts after
basic install steps have finished. An install script can be added using the meson
object:

meson.add_install_script(command, argl, arg2)

Like with all Meson functions that take a command to be run, it can be
an executable, custom target or the result of find_program. It can also be
a plain string, in which case it is internally converted to a program by using
the find_program command. The remaining args are passed as command line
arguments to the script. Meson will also set environment variables listed in
Table 9.2 when the command is run.



9.6 OTHER THINGS THAT HAPPEN DURING INSTALL

Most entries in the table are fairly self-explanatory but a few might require
some discussion. The variable MESON_INSTALL_DESTDIR_PREFIX contains the
install prefix with DESTDIR prepended. This is the directory where the script
should put all its files. It is recommended to use this variable rather than trying
to create it manually, because combining DESTDIR with the prefix has some edge
cases.

The second unusual variable is MESON_INTROSPECT. It merely provides a way
to run Meson introspection commands! from the install script. The actual com-
mand can vary a lot between operating systems. Here are a few possible values:

environment | value

default /usr/bin/meson introspect

custom install | /home/username/meson/meson.py introspect
custom Python | /usr/bin/python34 /usr/bin/meson.py introspect
Windows C:\Program\ Files\meson\meson.exe introspect

Using the environment variable means that install scripts don’t have to im-
plement lookup heuristics for Meson’s executables, but instead they will always
work. Note that the string usually contains multiple parts, the command and its
argument. If your script is implemented in a language that requires commands
to be arrays rather than shell command strings, you need to split the string
yourself using the tooling provided by the language. Simply splitting by spaces
is not reliable, it will break if your paths have any spaces in them.

9.6 Other things that happen during install

Even though the user-visible part of installation looks like file copying, behind
the scenes things are different. Merely copying files from the build directory to
the install location is not enough, and doing so would lead to broken installs.
Meson does additional work required by the system and changes the installed
files. These changes deal with executables and shared libraries.

Providing shared libraries from system directories requires following a set
of fairly complex guidelines. For example on Linux and some other unixes the
output file name of a library example is not libexample.so as one would expect.
Instead there should be a symbolic link named libexample. so that points to the
actual file with very specific naming conventions based on its name and version.
A detailed overview of the problem is out of scope of this book, suffice it to
say that Meson takes care of all this boilerplate behind the scenes. Interested

LAt the time of writing the introspection functionality is still in flux, so it is not discussed
in this book

107



108

9 INSTALLING

readers are advised to look up the reference documentation for their platform to
find out more.

Another important change has to do with a concept called rpath. When you
run an executable that uses shared libraries, the system’s dynamic linker will
only allow those files to be found from certain directories. This is a basic security
feature to prevent malicious programs from hijacking system libraries.

The downside of this is that if you build a shared library and an executable
using it, the executable can not be run directly from the build directory. The
executable file formats used on most platforms (ELF on most Unix systems and
Mach-O on macOS) allow you to write additional information inside the output
files. These rpath entries list additional directories where shared libraries can
be loaded.

Meson automatically sets up rpath entries so that executables can be run
directly from the build directories. It will automatically remove these entries
from the files it installs. Spurious rpath entries are forbidden in system libraries
because they can cause security issues as well as weird behaviour and difficult
bugs.

Windows does not support rpath entries at all. Meson tries to emulate the
behaviour as best it can, but in the general case programs can not be run directly
from the build dir on Windows platforms.

0.7 Accessing data files before and after install

Having an application access its own data files turns out to be a fairly tricky
problem. A typical cross platform application should work with at least the
following ways:

1. When run from the build directory, it should access data files in the source
directory.

2. When installed on the system, it should access data files from the system
install.

3. When run as a relocatable app bundle, it should access data files in its
own bundle, that is, relative to the current executable.

4. In all cases it should provide a way to override the location of data files
with e.g. an environment variable.

There are many almost-working solutions to this problem. For example the
first item can be worked around by requiring that the program is always installed
and run from the install location rather than from the build dir. This works but



9.7 ACCESSING DATA FILES BEFORE AND AFTER INSTALL

is tedious, slow and it’s surprisingly easy to forget to run the install command
before starting the program.
Unfortunately there is no ready made solution that works on all these differ- 109
ent cases. This is something each project needs to do on their own based on their
specific requirements. A typical solution would be to have a dedicated function,
say open_data_file that is the only way to access data files. Its implementation
might look like this (in C-like pseudocode):

FILE* open_data_file(const char *file_name) {
if (envvar_set ("PROG_DATADIR"))
return fopen(envvar_value("PROG_DATADIR") + file_name);
if(is_run_from_build_dir()) {
return fopen(path_to_source_dir + file_name);
return open_file_installed(file_name) ;

}

That is, if file location has been overridden with an environment variable,
use that. If we know, somehow, that the program has been invoked from the
build dir, load files from the source dir. Otherwise call into a platform specific
file open method. A pseudocode solution to the platform specific part might
look something like the following.

#ifdef _ APPLE__
FILE* open_file_installed(file_name) {
// Open file from within the current bundle.
¥
#elif _WIN32
FILE* open_file_installed(file_name) {
// Open file according to Windows rules.
¥
#else
FILE* open_file_installed(file_name) {
return fopen(INSTALL_PREFIX + file_name);
+
#endif

This code only works if the layout of resource files is the same in the source
directory as it is in the final installed directory. This is the recommended way
to lay out resources. It also allows you to install the entire resource tree with
one install_subdir command. There are many projects that do not follow
this rule, but instead keep, for example, in separate directories in source root.
Typically all graphics are in a directory graphics, sound files in audio and so
on.



110

9 INSTALLING

Both of these approaches work and can be used. Neither of them is “the right
way to do things”, they just have different tradeoffs. Having the same layout in
the source tree and install tree is a bit more work when resource files are created
and manipulated, as they are slightly deeper in a file system hierarchy. Top level
directories are easier to manage, but they require more code to install. They
also require more code to access when run from the build dir, as all file paths
are different.

9.7.1 Packing resources to an archive

As a final twist to installation, sometimes resources are not provided individually
but as a potentially compressed single resource image. This is most common in
computer games, where resource packing is used to, for example, minimise image
size by using custom compression schemes and trying to make the game harder
to reverse engineer and exploit.

Generating a compressed image is usually slow and computationally expen-
sive, thus it should not be used during development, only when creating the final
result. This typically happens during integration tests that run daily and when
shipping the final product. This requires updating the resource loading code to
work in both cases transparently.

The build system changes are straightforward. The difficult part is writing
the functionality for creating the archive. This is always project dependent and
it is best written as a standalone script that hides the implementation. Then we
need a project option to decide whether to install resources directly or to pack
them. Putting these two together we get the following build definition snippet.

if get_option('pack_resources')
meson.add_install_script('resource_packer.py',
meson.current_source_dir())
else
install_subdir(...)
endif




Chapter 10
Project options

All projects start simple. There is one executable. It does one thing. Everything
is fine. Then it needs to do two things. Then three. Four. Five. Eventually
you find a need for some optional feature, such as enabling extra debug logging.
When faced with this problem, many people first solve it by editing their build
definitions so that the functionality can be removed by commenting out some
declaration.

As the project size grows the number of things that need toggling usually
grows. After about three such options it becomes inconvenient to configure
the project by editing the build definition. What is required is some kind of
mechanism to change the build configuration from the outside without editing
the build definitions. In Meson this is achieved by build options.

10.1 Builtin options

Meson provides several options automatically for every project. These are for
global settings that most projects require. The most common of these are the
various install paths that specify where files go when installed as discussed in
Chapter 9.

The remaining builtin options are used for specifying elementary properties
of the build such as optimisation levels, debug info, compiler warnings, language
standards and many more. Even though there are many options, in day to day
development most people will only need to care about a handful of them. The
most common of these being buildtype, which can be used to quickly toggle
between debug and optimised builds. Obtaining the full set of options will be
explained in Section 10.4



112

10 PROJECT OPTIONS

10.2 Declaring and using project options

Each project can specify an arbitrary number of options. They are defined in a
file called meson_options.txt located at the project source root. An option for
toggling extra debug code can be written like this:

option('extradebug', type: 'boolean', value: false,
description: 'Enable additional debug code.')

By itself an option does nothing, it’s just a variable. Using it requires adding
functionality in the build definition.

project('simpleoption', 'c')
if get_option('extradebug')

add_project_arguments ('-DEXTRA_DEBUG', language: 'c')
endif

If the option is set then all C compilations get the extra arguments.

10.3 Defining options

Options are defined with the option function that can only be called from the
option file. Its first argument is the name of the option. The function accepts
many keyword arguments, some of which are common and some which can only
be used with certain other option types. The common keyword arguments are:

type defines the type of the variable and can be one of string, boolean,
integer, combo, array or feature.

description is a freeform string comment.

value is the default value for this option.

10.3.1 String option

A string option is a freeform UTF-8 string. Its definition takes no additional
keyword arguments and its default value is the empty string.

10.3.2 Boolean option

A boolean option can only hold the values true or false. Its definition takes
no additional keyword arguments and its default value is true.



10.3 DEFINING OPTIONS

10.3.3 Combo option

A combo option can take one value of a predefined set of strings. The list of
possible values is set with the choices keyword argument whose value is an
array of strings. If the default value is not defined, the first value from the array
is used.

# The value can only be one of the four main headings.
option('heading',
choices: ['north', 'east', 'south', 'west'])

10.3.4 Integer option

An integer option is a value. Optionally you can set the maximum and minimum
value with the min and max keyword arguments.

10.3.5 Array option

An array consists of one or more strings. By default there are no limitations on
the contents. If the choices keyword argument is defined then only strings that
are in the choice array may be put in the value.

# This option can have values like
# ['red'] or ['red', 'blue'] or []
# but not
# ['yellow']
option('colors', type: 'array',
choices: ['red', 'green', 'blue'l])

10.3.6 Feature option

A feature option is a special kind of combo option. It can have one of three val-
ues: enabled, disabled or auto. When get_option is called on a feature object
it does not return a string, but a special feature object. The only thing you can
do with one is to pass it to the dependency, find_program and add_languages
functions and the compiler object’s find_library method as the required key-
word argument.

The option overrides Meson’s lookup functionality. The enabled value is
the same as specifying required: true. The value of disabled immediately
returns a not found object without actually looking. The value of auto is special
as it ties the value to a separate builtin option called auto_features. In a weird
inception-y twist that option also has possible values of enabled, disabled and

113



114

10 PROJECT OPTIONS

auto. In this case the auto value is identical to specifying required: false
as the keyword argument.

This setup may seem weird and convoluted, and for single options it is. The
design starts to make more sense when there are many optional components,
such as plugins!. Suppose you have a project with a dozen plugins, and each
needs to be enabled or disabled individually. This implies that every plugin
needs to have its own option. However toggling every single option is tedious so
you’d also want to have a way of switching all at once. This can be achieved by
setting each individual toggle option to auto.

Now you can switch all plugins on or off with the global auto_features
option. Overriding the setting for any individual option can still be done by
switching that option from auto to, say, disabled.

10.4 Exploring and setting option values

One thing about Meson options that often confuses new users is that you can
never set option values from within build files. They are always set from the
outside. Build files can request certain default values to be used when the
project is being configured from the first time but they are not guaranteed to be
used. Once an option has any value, it can never be changed from within the
build file, even during reconfiguration. The value it has when reconfiguration
begins will remain until it has fully finished.
Requesting new default values is done in the project method call.

project(..., default_options: ['optname=value'])

This snippet tells Meson that when the project is being configured for the
first time, the value of option optname should be value. This statement is only
considered on the first run. On subsequent configurations it is ignored even
if you change this value in the project call, because the option already exists
and has a value. If the user has specified a value on the command line with
-Doptname=value2, it will override the default value set in project.

The way to set options is to use the meson configure command line tool.
The default way of using it is to execute the configure command in an existing
build dir. This will list all global and project options and their current and
possible values.

The output of the program is too wide to fully fit on this page, so here is
a highly condensed and edited version of the output. The real output for each
option has e.g. a brief description about the option and what it is used for.

IThis feature was originally designed for the GStreamer multimedia framework, which has
100+ plugins



10.4 EXPLORING AND SETTING OPTION VALUES

$ meson configure

Core properties:
Source dir <<source dir>> 115
Build dir <<build dir>>

Core options:
Current Value Possible Values
buildtype

debug
optimization

[plain, debug,
[true, false]

[0, g, 1, 2, 3, sl
warning level [0, 1, 2, 3]

Base options:

Current Value Possible Values

[true, false]
[true, falsel

Compiler options:

Current Value Possible Values

cpp_args
cpp_link_args []

cpp_std c++11 [none, c++11,

Directories:

Current Value

includedir include
libdir 1ib/x86_64-1linux-gnu

Project options:

Current Value Possible Values

frobnicate [true, falsel

subproj:opt [a, b, c]

The output splits the options into logical groups and prints them one by one.
The first set of options are the core options. They are the same in all Meson



116

10 PROJECT OPTIONS

projects and deal with general project setup.

The next set are the base options. They are also fundamental options but
they are either language or system dependent. That is, some base options only
appear when building with certain toolchains. The first option listed is b_lto
and it can be used to enable link-time optimisations. If no toolchain currently
in use supports link-time optimisations, the option does not exist. This is the
case when compiling, say, a pure Java project.

All base options’ names start with the prefix b_. This prefix is preserved to
based options. Trying to define a project option whose name begins with b_ is an
error and will cause Meson to exit immediately. There are other such preserved
prefixes. Each supported programming language preserves its own language
name as prefix, so for example all options that begin with c_ are reserved for
Meson’s internal use for options related to the C toolchain.

This project is implemented in C++ and the next set of options are the lan-
guage options. They all start with cpp_. Of particular note is the cpp_std
option that sets the version of the language in use. In practice many projects
try to set this on their own with custom compiler flags, but that is not reli-
able as compiler flags set inside build files are not used, for example, in system
introspection tests.

The next set is the directory options. They are identical in behaviour to core
options but they are only used for defining installation directories. Thus they
are listed in their own group for clarity.

At the very end are project options. They are as defined in the project’s
option file. Subproject options are also listed here, and their option names are
prefixed with the subproject name followed by a colon.

Setting values of variables is almost anticlimactically simple. It is done by
passing a -D command line argument to the configuration command.

$ meson configure -D buildtype=debugoptimized

This command produces no output. In fact it may seem like nothing has
happened but the value has been updated. You can verify it yourself by running
meson configure again and checking the value. The next time a build is started,
Meson will detect the change in option values and will reconfigure itself with the
new values before running the build.

10.5 Sharing options between projects

As was discussed in Chapter 6, subprojects are run in isolated sandboxes. They
can not communicate with each other with the exception that the master project
is able to access finished subprojects’ variables. This presents a problem for



10.5 SHARING OPTIONS BETWEEN PROJECTS

configuration because sometimes you want to ensure that the various options in
subprojects are in sync. Suppose you have many projects all of which support
many backends. When used on their own they can use any backend they wish,
but for a conglomerate project you’d want all of them to use the same backend.
There are also cases where it would be convenient, but not mandatory, for all
projects to have same project options.

The latter of these is conceptually simpler as it reuses the default_options
mechanism from project. Both functions for invoking subprojects, subproject
and dependency also accept a default_options keyword argument.

subproject ('subproj',
default_options: 'optname=overridevalue')

These default options can only be used to override the subproject’s options,
not global options as they have already been set. If an option is defined both
in the subproject’s project call and in the calling project’s default options, the
latter override the former. A command line switch overrides both of these.

With this approach there is no guarantee that option values are the same
in the various subprojects. Even if they were, there is no guarantee that they
will remain the same. Each option value can be changed with meson configure
independent of other values. Enforcing same values for options can not be done.
Meson provides a different elementary operation for this case called a yielding
option.

An option can be marked as yielding with the yield keyword argument.

option(..., yield : true)

The semantic meaning of yielding takes a fair bit of text to explain but is in
the end conceptually simple. When a yielding option is defined in a subproject
(but not in the master project), and there is an option with the same name
in the master project, then and only then will the subproject option become a
reference to the master project’s option. If even one of the conditions does not
hold, then the yield keyword argument is ignored.

Thus if a project is built on its own, it gets its own versions of all yielding
options but if it is built as a subproject, it will use the master project’s versions
transparently. If there are two subprojects that both have a yielding option and
the master project has the same option, all three will refer to the same option
and thus have the same value. On the other hand if the master project does
not have the option then each subproject will have its own, independent option.
They will not be the same and there is no way to make them alias directly.
Yielding goes in one direction only, from subprojects to the master project.

117






Chapter 11
Custom build steps

The build target commands Meson provides are convenient but they can only go
so far. There are many build tasks that can’t be done with them and trying to
provide a ready made tool for every eventuality is not possible. Because of this
Meson, and indeed almost every build system ever made, allows users to define
their own custom build steps.

11.1 Generating data files

Let’s examine how custom build steps work by creating a simple asset pipeline
for images. This is a common task, especially when developing computer games.
Typically graphical assets are stored in revision control systems in a different
format than what will be used in the final game. Typically files are kept in
the drawing program’s internal file format or in a general purpose file formats
such as PNG. The deployed format on the other hand is usually heavily opti-
mised for rendering. The actual format to use might depend on the deployment
platform: mobile devices typically support different texture compression formats
than desktop graphics cards.

The asset pipeline must first convert images from one format to another and
then install the generated files. Suppose that we have a Python script called
image_converter.py that can perform this task and that we have only one file,
image.png, that needs to be processed and the file extension for the converted
image is .cmpr.

The generation step is declared with the custom_target command. The
meson.build file that implements the specified pipeline has the following con-
tents.



120

11 CUSTOM BUILD STEPS

project('imageconverter')
conv = find_program('image_converter.py')

custom_target ('img',
input: 'image.png',
output: 'processed_image.cmpr',
command: [conv, '@INPUT@', '@OUTPUTQ'],
install: true,
install_dir: get_option('datadir') / 'myprog')

This declares a custom target that runs the conversion command. The
command keyword argument specifies the actual command that needs to be run to
convert the file. It does not take the input and output files directly as arguments
but instead the weird looking strings @INPUT@ and @OUTPUT@.

Meson will expand these variables internally to point to the actual files. The
end result is that during compilation the following command will be executed:

python3 path/to/image_converter.py \
path/to/image.png \
path/to/processed_image. cmpr

This design choice was made so that build definition files do not need to know
the actual output locations of the generated files. In fact the build definitions
can’t know that, since the layout of the build directory is chosen by the backend.
This does place an additional burden on file generators: they can’t choose where
and how to lay out their own files, they must conform to the setup passed to
them via command line arguments.

After the sample project’s build directory is set up, the project can be built:

$ ninja
[1/1] Generating img with a custom command.

and then installed:

$ DESTDIR=/tmp/stage ninja install
[0/1] Installing files.

Installing processed_image.cmpr to /tmp/stage/usr/share/myprog




11.2 DEPENDENCY FILES

11.2 Dependency files

An important aspect of custom build steps is reliability. Whenever any input or
script files change, the output files must be regenerated. Meson sets up these
dependencies automatically. But if we slightly change the way the program
works, things no longer work as expected. Instead of converting a single image
let’s assume that the task is to take many different images, combine them in
a single big image and then compress the result. Joining images in this way is
called a tezture atlas.

Combining individual images can get fairly complex and writing all that
logic in the build file as arguments to the compressor script is not fun. Instead
we write the combination rules to a file and pass that as an argument to the
combiner script. A simple JSON file describing how to generate a 2 x 2 composite
image configuration file might look like this:

L
['filel.png', 'file2.png'],
['file3.png', 'file4.png']
]

and it would be invoked with the following Meson snippet.

custom_target(.. .,
input: 'composite.json',
output: 'processed_image.cmpr',
command: [comp, 'G@INPUTQ@', '@OUTPUTQ'])

This generates the output, but it is not reliable. If any of the source images
is changed, Meson will not regenerate the composite image. This seems like
a fairly big problem, the only two ways to solve it seem to be to either parse
the contents of the JSON file and try to detect file names or manually list all
files this target depends on. These approaches require either understanding the
contents of arbitrary input files or manual work, respectively. Neither of these
is a workable solution except in the simplest of cases.

This same problem comes up in regular compilation all the time: source files
must be recompiled when they, or any header they include, changes. This prob-
lem was solved in the early 90s by having the compiler write out a dependency
file which lists all header files that it processed while compiling the current file.
The build invoker then reads these files after each successful compilation and
stores the dependency information for the next compile.

The de facto compiler driver at the time was Make, so the format of the
dependency files was chosen to be a Makefile subset. Any program that can

121



122

11 CUSTOM BUILD STEPS

generate a dependency file in this format can be integrated with Meson to get
automatic and reliable dependency tracking. The format itself is simple. If we
add support to the generator script, its dependency file output would look like
this:

processed_image.cmpr: ../composite.json \
../imagel.png \
../image2.png \
../image3.png \
../image4.png

The file format is straightforward. The first entry is the output file followed
by a colon followed by all files that were processed. The entire file could have
been written on one line but using backslashes is a recommended best practice
as it increases readability and thus debuggability. Having ../composite.json
in the file is not strictly necessary as Meson adds a dependency on all input files,
but the script can not know what the build system above it is doing so it adds
all processed files just to be sure. There is no downside to this duplication.

Once the generator script has been updated to write dependency files, we
need to tell Meson about it.

custom_target(. ..
command: [comp, '@INPUTQ@', '@OUTPUT@', 'Q@DEPFILEQ'],
depfile: '@OUTPUT@.d')

Dependency file integration is enabled with the depfile keyword argument
which specifies the name of the dependency file. By convention this is the output
file name with an extra .d suffix. This ensures that the dependency file names
are unique so different targets won’t accidentally overwrite each others’ dep files.

Most programs need to be told where to write the output file. In this simple
script it is simply listed as the third argument. The text string @DEPFILEG
will be expanded to the actual file name just like @INPUT@ and @OUTPUT@. For
actual scripts you may need to write extra command line arguments such as
[’--dep-file’, ’@DEPFILEQ’].

11.3 Special strings in command arguments

Meson will automatically substitute the following template strings in command
arrays.

@INPUT@ expands to a full path to the input file. If there are multiple input files,
this entry gets expanded to all of them. So for example a command array



11.4 GENERATING SOURCE CODE

[exe, ’@INPUT@’] and two input files would generate a command array
[exe, ’sub/filel’, ’sub/file2’]. The expansion does not happen if
the entry has any other text, such as >-i@INPUT@’. This definition is
illegal when there are multiple output files but works if there is only one
output.

@OUTPUT@ behaves identical to @INPUT@ but works on output files.

@INPUT<NUMBER>@ expands to the output file at the index specified by the num-
ber. @INPUTO® refers to the first input file, @INPUT1@ to the second one
and so on.

@OUTPUT<NUMBER>@ behaves identical to @INPUT<NUMBER>@ but expands to out-
put files instead.

@OUTDIR@ expands to the directory where the output files should be written. A
typical use case would be [cmd, ’--outdir’, ’@0UTDIR@’].

@DEPFILE@ expands to a full path to where the script should write its depen-
dency info file.

@PLAINNAME@ expands to the input file name without path segments, so a value
like subdir/file.ext would expand to file.ext.

@BASENAME@ expands to the input file name without path segments, so a value
like subdir/file.ext would expand to file.

11.4 Generating source code

Generating data files is fun and all, but things get really interesting when you
start generating source code and compiling the result in other build targets in
the same project. It is even possible to compile the generator program, generate
source code with it and compile the result within a single project.

A typical source code generator problem is embedding assets inside an exe-
cutable, also known as resource bundling. The idea is to have your binary files
available in the source code as byte arrays. They are then immediately available
without needing to look up resources on the file system. Here is how you’d use
it.

extern const char *asset_array;
#include<stdio.h>

int main(int argc, char **xargv) {
printf ("%s\n", asset_array);

123



11 CUSTOM BUILD STEPS

return O;

}

124 The program will print out a text message that is in the asset_array vari-

able. The actual text to be printed is in a file called asset.txt. This file needs
to be converted to a C source file defining the array and compiled in the target.
This is achieved with the following Meson build file.

project('c_gen', 'c')
srcgen = find_program('srcgen.py')
generated_c = custom_target('c generation',
input: 'asset.txt',
output: 'generated.c',

command: [srcgen, 'GINPUTQ', '@OUTPUT@'])

executable('prog', 'prog.c', generated_c)

The only difference to previous file generator files is that the return value
of custom_target is captured in a variable and then added in the executable
target’s list of sources. Meson will set things up automatically, including all
dependencies so that the build runner will first run the generation step and
only after it has finished, does it try to compile the result. The actual build is
uneventful producing a runnable executable that prints the contents of the asset
file.

$ ./prog
Asset text!

11.5 Generating source and headers

The notable downside in the approach given is that you need to write the array
definition in prog.c manually. The standard approach would be to #include
a header with the definitions instead. We can change the generator program to
also create the header, and thus the program source looks like this:

#include<generated.h>
#include<stdio.h>

int main(int argc, char *xargv) {



11.5 GENERATING SOURCE AND HEADERS

missing
dependency info ..-] Prog.c 3 Prog.o

generated.h

asset.txt /
generated.c |—>»| generated.o

Figure 11.1: A broken build graph, prog.c has not been declared to depend on
the generated header generated.h leading to a build failure.

prog

printf ("%s\n", asset_array) ;
return O;

}

Only the first line has changed. If we try to compile this program, there is
an unexpected problem:

$ ninja

[1/4] Compiling C object 'prog@exe/prog.c.o'.
FAILED: progQ@exe/prog.c.o

<<compilation command>>

../prog.c:1:9: fatal error: generated.h: No such file
#include<generated.h>

compilation terminated.

Even stranger is that if you run the build command again, it succeeds:

$ ninja

ninja: Entering directory “build'
[3/3] Linking target prog.

This failure is caused by a combination of two things: the build definition is
slightly broken and the Ninja backend is aggressively parallel. It tries to run as
many things simultaneously as possible to minimise build times. To understand
why the build fails, we need to look at the whole build graph for this project. It
can be seen in Figure 11.1.

When Ninja parses its input file it generates an internal graph similar to this
one. It then tries to launch as many build tasks as it can up to a maximum

125



126

11 CUSTOM BUILD STEPS

number, which by default is the number of CPU cores on the current machine
plus two. Because the build definition is broken, Ninja sees two tasks that don’t
depend on anything: generating the source files from asset.txt and compiling
prog.c to an object file. It launches both of these at the same time leading
to compile failure since the header does not exist yet. Ninja will wait for the
generator script to finish, though. Thus when Ninja is run again, the header
exists and the build succeeds.

This failure mode is nondeterministic. If Ninja launched the generator script
first and would get suspended by the operating system in just the right way, the
generator could successfully run before the compilation process starts. These
kinds of sporadic failures are strange and hard to debug unless you know what
causes them. These errors are roughly analogous to race conditions in multi-
threaded programming.

The proper solution to this problem is to add the missing dependency in-
formation in the build definition. Meson has one rule for this: if a build target
has generated headers in its sources, then it will ensure that all headers are
generated before any source belonging to the target is compiled. Thus it is
the responsibility of the build definition writer to add generated headers in the
source list of all targets that use them.

We need to change the build definition slightly to achieve this. The generator
command needs to be changed to create two output files and then add that to
the target.

project('c_gen', 'c')
srcgen = find_program('srcgen.py')
generated = custom_target('c generation',
input: 'asset.txt',
output: ['generated.c', 'generated.h'],

command: [srcgen, 'QINPUTQ', '@OUTPUT@'])

executable('prog', 'prog.c', generated)

With this change the project builds without errors.

$ ninja
[4/4] Linking target prog.

This approach works well for single targets: all you need to do is to add
everything in the target and things work. It does not work at all for the case
when you need to use the headers from multiple targets but build the source only



11.6 USING GENERATORS

once. This happens when you build a library with generated sources and need to
expose some of the generated headers to users of the library. More specifically,
this is an issue if you generate public headers as opposed to private headers

We need to declare a dependency that contains the generated headers, a
proper include path and the library to link against. The declaration in all its
simplicity looks like this.

# Same behaviour as above, generates a .c file and an .h file.
generated = custom_target(...)
lib = library('name', generated, ...)
incdir = include_directories('.')
1lib_dep = declare_dependency(link_with: 1ib
sources: generated[1] # Only the header, not source.
include_directories: inc)

The important piece here is the sources keyword argument. All entries in
it will be placed in the source list of all targets that use this dependency. Then
Meson will ensure that the headers are built before any source code that tries
to use it.

11.6 Using generators

Custom targets work fine for single files and targets but sometimes you need to
run the same conversion steps for many input files. This is where generators
come in. They provide a richer, but slightly more complex way of generating
files.

Suppose we have our own DSL for describing objects. These descriptions
are stored in files with a .dsc extension and need to be processed with a dsc
compiler to produce a source and header pair. We have a program that needs to
generate more than one of these files to work. We could solve this by writing a
custom target for each file pair, but with generators we can define the rule only
once and use it on many input files.

The build definition using a generator looks like the following.

project('generator', 'c')
idl_compiler = find_program('dsc_compiler.py')
g = generator(idl_compiler,

output: ['O@BASENAMEQ@.c', 'OBASENAME®@.h'],
arguments: ['Q@INPUT@', '@OUTPUTOQ@', '@OUTPUT1Q@'])

127



128

11 CUSTOM BUILD STEPS

generated = g.process('objectl.dsc', 'object2.dsc')

executable('prog', 'prog.c', generated)

Building files with generators takes multiple steps. The first one is calling the
generator function that creates a new generator. Its only positional argument
is an executable that will be used to do the conversions. A generator can be
thought of as a rule for how to convert input files to output files. In essence it is
a custom target, but the files to process have been separated from the processing
rule.

A generator’s rule accepts the same substitution variables as a custom target
and they behave in the same way. This example sets up a build rule that converts
a file called object.dsc into object.c and object.h. We then use the rule with
the process() method and give it two input files. This will produce a total of
four output files: two headers and two source files.

Note that up to this point no files have been generated. We have only set
up a rule specifying how and which files should be generated. They only spring
into existence when we use the return value of process in a build target. Only
then will the files be generated, and they will be placed in the target’s private
directory. If the return value is used in several targets, each one of them will get
their own generated copies.

The main program that uses these files merely generates and deletes one of
each object type:

#include<objectl.h>
#include<object2.h>
#include<stdio.h>

int main(int argc, char *xargv) {
objectl *cl = new_objectl1();
object2 *c2 = new_object2();

printf ("Objects created.\n");

delete_objectl(cl);
delete_object2(c2);

printf ("Objects deleted.\n");
return 0O;




11.6 USING GENERATORS

This is all that’s needed, compiling and running the result is done in the
usual way:

12
$ ninja 9
[6/6] Linking target prog.

$ ./prog
Objects created.
Objects deleted.

11.6.1 Extra arguments in generators

There are cases where you’d want to use the same generator rule for two different
sets of inputs but they need slightly different command line arguments. This
would mean that you need to define two different generators, one for each set
of arguments. Meson provides a way to get away with only one definition. This
is done with the argument string @EXTRA_ARGS@. When the process method is
called, you can specify additional command line arguments with the extra_args
keyword argument. If no arguments are specified the extra argument string is
removed completely.
This means that if you have a generator like this:

g = generator(...,
arguments: ['@INPUTQ@', '@OUTPUT@', 'G@EXTRA_ARGS@']

then calling it without extra arguments like this:

output = g.process('filel.in')

results in a command invocation like this:
generator_prog ../filel.in filel.out

Using extra arguments like this:

output = g.process('file2.in',
extra_args: ['--something'])

yields this invocation:

generator_prog ../file2.in file2.out --something






Chapter 12
Cross compilation

Thus far we have focused only on native compilation. That is, building libraries
and executables that are meant to be run on the current system, or one similar
to it (same processor type, operating system and so on). In contrast this chapter
is about cross compilation, where the result of compilation is meant to be used
on a completely different machine.

There are many reasons for doing cross compilation rather than native. Per-
haps the biggest one is resources. Embedded computers systems have very slow
processors, only a few kilobytes of memory and no disk. Running a compiler on
such a machine is simply not possible, and if it were, the processor is so slow
that compiling even a trivial program would take hours.

The second major reason for cross compilation is bootstrapping new processor
architectures. In this case code can not be compiled natively since there is neither
a compiler to run nor a system to run it on. New platforms are bootstrapped
by cross compiling the bare minimum set of programs needed to compile code
natively on the device. Then the rest of the system can be built natively with
this system. Bootstrapping new platforms happens fairly rarely, but being able
to do that is important.

Cross compilation usually targets a different processor, but this is not a
requirement. It is also possible to cross compile code on the same processor
architecture but for a different operating system. A common case is compiling
Windows applications on a Linux machine using the MinGW cross compiler
toolchain. This allows one to develop software on two different platforms on one
machine simultaneously rather than needing to change computers or use virtual
machines.

The basic principles of cross compilation are fairly clear, but unfortunately
there is one major hindrance.



132

12 CROSS COMPILATION

12.1 A word about nomenclature

The terms used in cross compilation are confusing. Some words are used in
unexpected ways. There are also terms which mean different and opposing
things depending on which terminology is being used. Sometimes sentences are
confusing and illogical because of this. Sometimes sentences are confusing and
illogical on their own. This is made even more problematic by the fact that some
books, articles and web sites have errors where they first define their terms and
later on use them incorrectly.

Because of this, learning about cross compilation can be confusing at first.
You may feel confused and lost in a maze of words that make no sense. You
might be tempted to think cross compilation is something you can’t possibly
understand and just give up'.

If this happens to you, just remember: Don’t panic! Understanding cross
compilation takes some time and pondering. If you keep working on it, even if
some parts seem ununderstandable, eventually something will click inside your
head and the concept will become clear.

With that out of the way, let’s dive in. The biggest source of problems and
confusion is that in cross compilation there are not two different machines, but
actually three.

build machine The computer used for running the cross compilation jobs.
This is usually the developer’s desktop or laptop machine.

host machine The computer where the output of the cross compilation will be
run on.

target machine The computer where the output of the compiled program will
be run on.

This way of describing cross compilation is called the Canadian Cross and is
the native setup of e.g. the GNU toolchain. In some texts these machines are
called just “build”, “host” and “target”, but that increases the potential of mix-
ups. In this book we will always call them with their full name for clarity. The
first two types are as discussed above, but the target machine is where things
start to get complicated.

12.2 A practical example

Rather than try to work this out via abstract thinking, let’s look at a practical
example instead. Suppose you are working on a project that runs on a small form

IThe author of this book admits to feeling exactly like this when he first encountered this
issue.



12.2 A PRACTICAL EXAMPLE

Platform Desktop PC Raspberry Pi Arduino
Processor x86_64 ARMv7 AVR
Operating system Linux Linux None

Figure 12.1: The three machines used in the cross compilation example.

factor Linux computer such as the Raspberry Pi. This is a popular approach to
building devices that talk to external hardware. Its main limitation is that it does
not have the hardware for real time operations with precise timing requirements.
An example of such a task is controlling servo motors on drones.

One solution to this is to add an isolated and dedicated computer whose
only job is to manage the real time task. In this example we’re going to use an
Arduino, which is a widely used line of hobbyist microcontroller boards. Just
like any other computer it needs software to run. Microcontrollers don’t have an
operating system but instead they run a single program. These kinds of low-level
programs are called firmware and the concept of running a program directly on
the hardware without an operating system is called bare metal. Including the
desktop PC we now have three different computers in this project. The three
machines are detailed in Figure 12.1.

Typically firmware images are loaded onto boards and then left to run and
never touched. Our case is different, and we want to be able to build and deploy
new firmware on the microcontroller on the fly, and further we want to be able to
generate the firmware images on the Raspberry Pi rather than providing prebuilt
firmware images?. Creating new firmware requires two things: the firmware’s
source code and a cross compiler that can generate firmware images to run on
the microcontroller’s AVR processor.

The Raspberry Pi has an ARM processor, so the firmware compiler must
be a cross compiler (as its output can not be run on the Raspberry Pi itself).
This compiler is a version of the GNU compiler called avr-gcc. Most Linux
distributions provide a prepackaged version of this compiler but that version is
too old so we want to build our own to get the very latest compiler version. This
is where we get into trouble.

GCC is a big program. Compiling it on the Raspberry Pi can take hours.
Since we have a fast multicore desktop machine available we’d want to compile

2Why? Because we can. And because it is an interesting challenge.

133



134

12 CROSS COMPILATION

build machine host machine target machine
AVR-GCC sources firmware sources
arm-linux-gnueabihf-gcc > avr-gcc —p firmware

Figure 12.2: A full canadian cross setup for cross compiling and using a cross
compiler.

the cross compiler with it. In order to do that we need a cross compiler that
compiles from a desktop machine to the Raspberry Pi. This compiler follows the
standard GNU naming scheme and is called arm-linux-gnueabihf-gcc. The
leading part is called a GNU triplet and it uniquely defines the platform the
compiler is meant for. This particular triplet has three pieces information: the
processor (arm), the operating system (Linux) and the ABI (gnueabihf). This
string can have up to four pieces of information, which may seem strange for a
concept called “triplet”, but there you go. This act of cross compiling a cross
compiler is the most complicated cross build scenario there is because all the
three machines are different.

The build machine is the desktop PC with a standard x86_ 64 processor.
The host machine, where the output of the compilation will be run on is the
small Linux computer with a 32 bit ARM processor. Finally the target machine
is where the generated firmware image will run. It is the bare metal AVR
processor on the microcontroller board. A data flow diagram for this can be
seen in Figure 12.2.

Note that there are two different cross compilation phases in this setup. The
first one is the above mentioned cross compiling of the cross compiler. The
second one is cross compiling the actual firmware. Their cross build setups are
different:

build machine host machine target machine
compiler x86_ 64 ARM AVR
firmware ARM AVR AVR



12.3 OTHER NAMING SETUPS

12.3  Other naming setups

The Canadian cross is not the only way of categorising cross compilation setups.
The most common other way ignores the target machine completely as it is so
seldom used. Unfortunately they also change the meaning of host and target.
In this setup the host machine is “the machine the compiler is running on” and
the target machine is “the machine the result will run on”.

Thus the Canadian cross’s build machine is called the host machine with
this nomenclature and correspondingly the host machine is the target machine.
This is all terribly confusing but sadly the world of cross compilation has not
converged on one generally accepted set of terms.

12.4  Cross compilation with Meson

A fundamental difference between native and cross compilation from a build
system’s point of view is one of discoverability. When compiling natively every
thing you’d want to find out about the platform can be easily looked up and
tested. In addition most things are standardised and compilers have well defined
names. With cross compilation none of this is necessarily true.

Since the information can not be automatically detected, it must be provided
to the build system somehow. In Meson this is done through a mechanism called
a cross file. It is a plain text file that looks very much like the standard INT file
used by many programs and operating systems.

A sample cross file for compiling to a 32 bit ARM Linux device looks like
this.

[binaries]

¢ = '/usr/bin/arm-linux-gnueabihf-gcc'

cpp = '/usr/bin/arm-linux-gnueabihf-g++'

ar = '/usr/arm-linux-gnueabihf/bin/ar'’

strip = '/usr/arm-linux-gnueabihf/bin/strip'’
pkgconfig = '/usr/bin/arm-linux-gnueabihf-pkg-config'

[properties]
c_args = ['--system-argument']

[host_machine]

system = 'linux'
cpu_family = 'arm'
cpu = 'armv7'

endian = 'little'

135



136

12 CROSS COMPILATION

There are three main sections in a cross file. The first one is the binaries
section, which lists the paths to all binaries that will be used for the cross
compilation. In this example the file specifies both a C and a C++ compiler, the
static linker ar as well as helper tools strip and pkg-config.

The second section is the properties section, whose purpose is to provide free
form information for the cross build. In this file the c_args option means that
the -system-argument should be used for every C compiler invocation. There
are other things you can specify here that will be introduced later in this chapter.
In addition to system data you can also specify arbitrary key—value pairs here
and query them from your Meson build files.

The final section is the cross machine definition section. It consists of a
host machine definition or a target machine specification or both (when cross
compiling a cross compiler as discussed earlier in the chapter). This file specifies
only the host machine, meaning the target machine is implicitly assumed to be
the same as the host machine.

Cross compilation is set up by using the —-cross-file command line argu-
ment when setting up a build directory for the first time. Whether any given
build directory contains a native build or a cross build is set on the first invo-
cation. It can not be changed after the fact. Assuming the cross file is called
arm32-cross.txt, the Meson invocation to use it would look like this:

$ meson --cross-file=arm32-cross.txt builddir

Cross files are usually unique to each build machine, but not always. The
only strictly platform dependent part of it is the list of executables. If two
platforms use programs that have the same names and are located in the same
paths, then the same cross file should work on both. Otherwise the file needs to
be modified to match the setup of the build machine.

12.4.1 Machine properties in cross files

There are four different pieces of information that you must specify in the cross
file machine definitions. The values for all of them are plain strings, they must
all be present for the cross file to be valid. All values specified should be in lower
case only. This book lists only the most common values of these options, a full
up-to-date list of possible values can be found on the Meson web site.

The first one of them is system. It contains the name of the operating system
running on the the machine, such as linux. This is mostly self-explanatory
though there are a few surprises in the naming due to compatibility with other
build systems. All versions of Windows have the value windows and both macOS
and iOS have the value darwin after the kernel used on those platforms. Systems



12.5 CROSS FILE LOOKUP

that don’t have an operating system, such as firmware or embedded, should set
this to baremetal.

There are two different properties for identifying the processor: cpu_ family
and cpu. The reason for this is that sometimes you don’t care about the specific
details of the processor, just its general type. In contrast other projects require as
much information about the processor as possible. These include compilers and
assemblers and also projects that want to use CPU instructions that depend on
the microarchitecture. If Meson did not provide both of these properties, many
projects would need to have ad hoc code to determine one or the other.

In practice most processors have the same value for cpu and cpu_family, for
example all 32 bit Mips processors identify as mips. Notable exceptions are 32
bit ARM processors and x86. The latter’s cpu values vary wildly from i586 to
x86 and others.

The final piece of data is the endianness of the platform and it can have either
the value big for big endian or little for little endian. There are processors
with other endiannesses, but thus far nobody has needed to compile code for
them using Meson so they are not supported. Given that processors using any
other endianness than big or little were last created in the 70s, it seems unlikely
that support for those will ever be added.

12.5 Cross file lookup

When people get started with cross compilation they typically create a cross file
for each project and add them to revision control. This works for projects with
few developers but it becomes problematic when the number of contributors and
platforms increase. Different platforms may have different versions of various
toolchain binaries, they might be in different locations and so on. In these cases
it would make sense to provide cross files for each platform rather than for each
project. In this way one single cross file could be used for any project.

Meson supports this workflow by looking up cross files from the file system us-
ing a standard method called the XDG Base Directory Specification. The actual
specification is fairly involved, but for our use case we only need to know that
there are two environment variables, XDG_DATA_DIRS and XDG_DATA_HOME, that
specify where applications should look up system and user data files. The former
location is set up by the system administrator and contains global directories
like /usr/local/share. Meson will try to look up cross files in the meson/cross
subdirectory of the directories specified in the environment variable.

The other environment variable is used to look up cross files in the user’s
home directory. Typically this variable either points to some system-dependent
dir under the user’s home directory or is unset in which case Meson will use the
default value of ~/.local/share. Just like above the meson/cross subdirectory

137



138

12 CROSS COMPILATION

is used to house the cross files. In practice what this means is that if you create
a cross file with this name:

~/.local/share/meson/cross/mycross.txt

Then you can use this file to cross compile any project by setting up your build
dir with the following command:

$ meson builddir --cross-file=mycross.txt

12.6  Multiple cross files

Cross files can be layered on top of each other by specifying them on the com-
mand line:

$ meson --cross-file=crossl --cross-file=cross2 ...

Entries in later cross files override earlier files. Thus if crossi specifies both
a C and a C++ compiler and cross?2 specifies only a C compiler, the build would
use cross2’s C compiler and cross1’s C++ compiler.

Typically one defines a “base” cross file that has all the common toolchains
and platform properties and then would add individual override files for other
features. An extensive CI system might need to run cross compilation test suites
for ten or even more different versions of any given compiler. This layering
approach ensures that all the common platform features remain the same on all
these build setups.

12.7 Constants in cross files

As cross files get bigger they usually contain repetitive information, typically in
compiler arguments. For example you might need to pass some specific piece of
information about the underlying platform or chipset to many different tools.
This may cause typos or copypaste errors leading to bugs that are difficult to
track down. To simplify these cases you can specify constants in a special section
in your cross file and then use the variables in the rest of the cross file.

# Note that the constants section must always be the first thing
# specified in the cross file.

[constants]

arch = 'aarch64-linux-gnu'

clike_args = ['--sysroot=/opt/toolchain' / arch,



12.8 NATIVE FILES

'-DSYSTEM=' + archl]

[properties]
c_args = clike_args
cpp_args = clike_args

In this example we first specify the architecture and then the compiler ar-
guments needed for the cross compilation. The first argument is built with the
/ operator so Meson will join the two as file system paths whereas the second
uses the + operator resulting in basic string concatenation. If you have multiple
toolchains of a similar type, creating cross files for them is as easy as copying
the file to a new name and changing only value of the arch variable.

12.8 Native files

Since cross files are so convenient at describing all cross compilation properties
in one definitive place, it would seem reasonable to have similar functionality for
defining native builds as well. Meson provides this and the corresponding files
are called native files. They are used just like cross files:

$ meson --native-file=basic.txt ...

The syntax for native and cross files is identical, with the exception that you
can only define the build machine in the native file and host and target machines
in a cross file. A build can use both file types:

$ meson --native-file=basic.txt --cross-file=cross.txt ...

This is convenient for build reproducibility. Putting all platform configura-
tion in these files means that you can easily rebuild the software without fear
that some configuration data, typically environment variables, has been lost.

12.9 Running tests when cross compiling

Even though cross compilation is a fairly complicated affair, it turns out that
for build systems cross compilation is identical to native compilation. It can be
seen as just like using a different compiler with potentially different compiler
flags. The differences between the two happen both before and after the actual
compilations. The former is about configuration and the latter is about running
the compiled programs.

139



140

12 CROSS COMPILATION

Native programs can be run directly, but cross compiled programs generally
can not. Programs compiled for one processor architecture can’t run on a dif-
ferent one. For example, ARM binaries do not work on an x86_ 64 processor.
There are cases where this is possible, for example on a multi-arch Linux dis-
tribution you can run 32 bit x86 applications on a 64 bit x86__ 64 processor but
that is the exception rather than the rule. This is a problem because it means
you can’t run the program’s tests to verify that it is working.

Even though cross compiled programs can’t be run directly, sometimes they
can be run via helper applications.

System emulators such as QEMUJ2] emulate a complete computer system
including the processor and other hardware. The program is then executed
on this virtual system. This approach is easy to use but its major downside
is that hardware emulation can be 10x — 1000x slower than running the
program on real hardware.

System reimplementations are not emulators, but instead a reimplementa-
tion of “system software” of some other operating system. Perhaps the
best known example is the Wine[1] compatibility layer that allows you to
run Windows applications on platforms such as Linux and macOS. This
approach requires that both systems use the same processor type.

Other methods are also possible. One could transfer the binaries to a dif-
ferent machine, run them there and then transfer the results back. This
could also be done by mounting a shared network drive on both machines,
and running compile steps on the local machine and tests on the remote
machine.

Meson’s abstraction for all of these is the exe wrapper introduced in Sec-
tion 8.3.4. A wrapper can be defined in the cross file like this:

[binaries]
exe_wrapper = 'wine'

This declaration tells Meson that cross compiled applications can be run by
prefixing them with the given exe wrapper. Thus if Meson would need to run a
cross compiled program like this:

./some_exe —-argument

It would transparently run it like this instead:



12.10 CROSS COMPILATION AND CODE GENERATORS

wine ./some_exe —-argument

For Wine this is all that is needed to run the full test suite. Some other tools
may require command line arguments. Those can be specified by defining the
exe wrapper as an array.

[binaries]

exe_wrapper = ['emulator', '-argl', '-arg2']

If the setup is more complicated than this, the smart thing to do is to write
a script file that sets up everything needed to run the programs. A shell script
for this might look like the following;:

#!/bin/sh
# Set up the environment here.
emulator-command "$@"

Where "$@" is a Unix shell expression meaning “take all arguments given
to this script, quote them and use the result as arguments to the emulator
command”.

12.10 Cross compilation and code generators

Most projects don’t require extra work to be cross-buildable unless they both
generate source code during compilation and build the executables and run them
as part of the build. Since cross compiled binaries can usually not be run directly,
this is a problem. A traditional solution to this problem is to make the build a
two phase process. First all the tools are built with the native compiler and put
somewhere where they can be found. Then the code can be cross built using
these tools.

This approach works but it is a bit cumbersome. If you edit the code gen-
erators’ code you first need to build and install them and only after that run
the cross compilation. Some build systems might not pick up changes in system
tools and thus not regenerate all built sources. It would be more convenient if
the build system could take care of all of this in a single build invocation.

Meson provides two different solutions for this problem. The first one is
based on an exe wrapper as introduced in the previous section. When an exe
wrapper is set, Meson will use it transparently when built executables are used
during the build. The end user does not need to do any changes to the build
files.

141



142

12 CROSS COMPILATION

This leaves the third and the trickiest case: when cross compiled executables
can not be executed. This case is solved by tagging an executable as native, like
this:

executable('srcgenerator', 'srcgenerator.c',
native: true)

When cross compiling Meson always sets up two different toolchains, one for
cross compilation and one for native compilation. The latter is the toolchain
that would be used if the project were being compiled natively. Tagging the
target as native tells Meson to build it with the native compiler, which means
that it can be run as part of the build. The native keyword can be found in
some other functions such as dependency.

Building and using code generator tools typically follows this pattern:

dep = dependency('depname')
if meson.is_cross()
native_dep = dependency('depname', native: true)
gen = executable(...,
native: true,
dependencies: native_dep)
else
gen = executable(...,
dependencies: dep)
endif
# Use gen to generate code here.

This call to dependency will return a native dependency when building reg-
ularly and a cross dependency when cross compiling. In the latter case we need
to build the executable with the native compiler which also means we need to
find the native dependency version. It is stored in the native_dep variable
and passed to the executable call. This builds the program with the native
toolchain. The else branch is only executed during native builds and builds the
executable in the usual way.

In either case after the if/else block has been processed, the gen variable
contains an executable that can be run as part of the current build, even without
exe wrappers.

12.11 Firmware upload targets

Once a cross built executable has been built and tested it needs to be deployed to
a machine. This step is highly hardware dependent and has been implemented



12.11 FIRMWARE UPLOAD TARGETS

in a variety of different ways. The output files can be copied to a shared network
drive or transferred directly to the device with e.g. scp. It is also possible to copy
the files to a USB disk and use it to boot the device. All these approaches work
fine, but they require an existing operating system (or at least a boot loader) on
the target device.

Bare metal embedded devices do not have that. The firmware executable is
the only piece of software that will run on the device. It must be installed on the
device in a special way so that the system will start executing it immediately
after power has been switched on. The most common solution is to have a piece
of non-volatile memory called flash ROM, on the device whose only purpose is
to hold the firmware executable.

Flash ROM is different from normal memory. It can not be written to directly
from the device. Instead the system must be put in a special state so that
the flash ROM becomes writable and then the firmware can be transmitted
using a hardware specific protocol. This process is called flashing or burning
the firmware and the program that does this is called, unsurprisingly, a flasher
application. Nowadays flashing is usually done over USB with a command line
flasher application provided by the hardware vendor.

The flasher application can be invoked by typing the command line by hand
every time it is needed but it is much more convenient to create a Meson run
target to do this instead.

firmware_bin = executable(...)
flasher_app = find_program(...)
run_target('flash',
command: [flasher_app,
# Other application arguments here.
'——file',
firmware_bin])

Flashing the device can be done merely by invoking the flashing target.

$ ninja flash

Since firmware_bin is in the command line arguments, Meson will automat-
ically both expand the file name and add a dependency between the firmware
target and the flash target. Invoking the flash target will always rebuild the
firmware target if it is out of date, ensuring that a stale firmware binary is not
flashed on the device by accident.

143






Chapter 13

The Wrap dependency
download mechanism

Before dependencies can be used, they need to be obtained somehow. External
dependencies like this can be installed with the system package manager such as
apt. Internal dependencies are harder, because they require obtaining the source
code and putting it in the subprojects directory in a very specific way. There
are many ways to accomplish this.

The first one is called vendoring, where the full source code of the dependency
is duplicated in the source tree and put into revision control as if it was self writ-
ten code. A development style where all self written code and every dependency
is stored in a single repository is often called a monorepo. This approach is fairly
simple to implement, but there are also downsides. Duplicating code severs the
connection to the original code. Unless developers are careful, it is all too easy
to forget to keep vendored dependencies up to date. This approach is mostly
used inside corporations.

In the other end of the spectrum are projects where vendoring is not only
frowned upon, but prohibited altogether. This is the case for many free and open
source projects. A requirement for getting a project in a Linux distribution such
as Debian, Fedora or Ubuntu is that it must not contain any vendored code. All
dependencies must come from the system. These kinds of projects must obtain
their self built dependencies in some other way instead, especially when they are
built on platforms that do not have a concept of system package management.

A common solution is to clone the dependency projects’ repositories inside
your project’s source tree. This is called submodules in Git an subrepositories in
Mercurial. Most other revision controls have similar functionality. The major
downside of this approach is that cloning a repo brings in the entire development
history, which can be slow when there are many large dependencies.



146

13 THE WRAP DEPENDENCY DOWNLOAD MECHANISM

Meson has a builtin dependency downloader system to handle these and other
ways of obtaining dependencies. It is called Wrap because it works by adding
a small layer on top of upstream projects to make integration easier. This not
entirely unlike wrapping a burrito in paper so you can eat it without making a
mess.

13.1 The basic design

A Wrap dependency is nothing more than a file that specifies how a the source
code for a dependency should be obtained when requested. The dependency
resolution algorithm behaves in the following manner.

1. A project requests a subproject called mydep, either via the subproject
function or indirectly via a dependency fallback.

2. Meson looks up if there is a file called mydep.wrap in the master project’s
subprojects directory.

3. If yes, it will be parsed and the dependency will be downloaded according
to the instructions given in the wrap file.

4. If not, Meson will fall back to regular subproject lookup, that is, looking
for an existing project in subprojects/mydep.

This is the only way to obtain source code via Wrap. You can only get an
entire project and only in the subprojects directory.

This design makes it possible to use Meson both in monorepos and for isolated
per-project repos. Meson itself does not care where the dependencies come
from, just that they are stored under the subprojects directory in their own
directories.

Wrap files (or “wraps”) themselves are simple plain text files in the INI
format.

13.2 Downloading revision control checkouts

Wrap files are best understood through examples, so here is a Wrap file for a
subproject that is used for testing Meson.

[wrap-git]

directory=samplesubproject
url=https://github.com/jpakkane/samplesubproject.git
revision=head



13.3 DOWNLOADING A RELEASE ARCHIVE

The section text wrap-git quite literally says that this is a Wrap file for
checking out dependency source code with Git. The actual content consists of
three key—value pairs.

directory is the directory name where the checkout will be written to. This
defines a subdirectory directly under subprojects. The directory must
have only one segment, that is, it may not contain \ or / characters.

url is the download location. This is passed directly to git clone and can be
in any format supported by Git.

revision can either be a Git hash which unambiguously selects the revision to
check out, or it can be a Git tag, branch or the string head, which is an
alias to the remote repository’s master branch.

Whenever Meson reconfigures itself (that is, when the build definition has
changed), it will refresh all subprojects. Wraps that follow a specific branch will
be updated to the latest upstream commit. This may be considered a security
vulnerability. If the upstream repository has been compromised with malicious
code, it will be automatically downloaded and used in the current project. Using
a commit hash as the revision value makes this problem go away, but requires
manual work to keep up to date.

13.3 Downloading a release archive

There are cases where you want to use a release for the dependency rather than
the full repository. Typical reasons include legal and policy requirements. Fol-
lowing releases is also more stable than having your dependencies continuously
change.

Releases also amplify a different kind of problem, which is that many depen-
dencies use build systems other than Meson. Since you can only build native
Meson projects as subprojects, this presents a problem of how to get your build
definitions in the release. With revision control you can make your own branch
with the files you need and tell Meson to track that repo.

The Wrap files for releases solve this issue by having two independent parts,
the upstream release archive, often called a tarball, and an optional patch file on
top of it. Here is a sample Wrap file for the Zlib compression library.

[wrap-file]
directory = zlib-1.2.8

source_url = http://zlib.net/fossils/zlib-1.2.8.tar.gz

147



148

13 THE WRAP DEPENDENCY DOWNLOAD MECHANISM

source_filename = zlib-1.2.8.tar.gz
source_hash = <<SHA-256 hash code>>

patch_url = <<wrap file download path>>
patch_filename = zlib-1.2.8-8-wrap.zip
patch_hash = <<SHA-256 hash code>>

The directory entry has the same meaning as earlier but for release archives
there is an extra requirement. The established practice is that releases should
have all their files in a subdirectory having the name and version number of
the current release. This ensures you can unpack them and not have to worry
about accidentally overwriting an earlier version. The Wrap file’s directory must
match the directory name inside the archive.

The release archive is downloaded directly from upstream. The source_hash
entry is the SHA-256 checksum for the file. Whenever Meson downloads the file
it will calculate its checksum and verifies that it is the same as is written in the
Wrap file. If there is a mismatch, Meson will exit with a hard error.

The entries starting with patch_ are the same as above but they are for the
patch archive. A patch archive contains only build definition files. Its contents
will be extracted over the source tree creating a fully contained directory tree
that can be built as a subproject.

13.4 Using the WrapDB

The Meson development community maintains a web service for downloading
dependencies automatically. It is called the Wrap database or WrapDB for short
and can be accessed at https://wrapdb.mesonbuild.com/. The service pro-
vides Meson build definitions even for projects that don’t use Meson. These
build definitions are contributed by volunteers.

The web page can be used for quickly browsing the available packages, but
most interaction is done with the meson wrap command line tool. Suppose we
have a test program that needs to use the Zlib compression library. First we
search for it:

$ wrap search zlib
zlib

This command prints all available dependencies that match the search cri-
terion, in this case there was only one. More info is available with the info
command.


https://wrapdb.mesonbuild.com/

13.4 UsinG THE WRAPDB

$ meson wrap info zlib
Available versions of zlib:
1.2.11 2
A1 1

There are multiple versions. The default command installs the newest ver-
sion, which is what we want.

$ meson wrap install zlib

Installed zlib branch 1.2.11 revision 2
$ 1s subprojects

zlib.wrap

The install command does not load any actual code, only the wrap file needed
to download them when needed. The Wrap system also supports updates, which
are usually initiated by checking for newer versions.

$ meson wrap status
Subproject status
zlib not up to date. Have 1.2.11 2, but 1.2.11 3 is available.

In this case there is a new version available. The upstream version has not
changed but the packaging revision number has increased from 2 to 3, indicating
packaging fixes. The update subcommand can be used to bring the current
version up to date with the latest upstream.

$ meson wrap update zlib

Updated zlib to branch 1.2.11 revision 3

On next build Meson will reconfigure the project to use the new dependency
version.

149






Chapter 14
Converting an existing project
to Meson

Most projects do not have the luxury of starting from scratch as they have
existing code in production, which must keep working. This limitation applies
also to build systems. Converting existing projects from an established system
to something more modern can be a big undertaking, but it can also provide the
biggest productivity payoffs. In this chapter we shall examine various aspects of
converting a project from an existing build system to Meson. There are many
different pitfalls and obstacles that pop up in many conversions, so we’ll try to
find workable approaches for them to make the conversion process as smooth as
possible.

14.1 Why change build systems? Is it even worth it?

Before embarking on any rewrite or upgrade project, you should first ask yourself
the most important question: why. Simply wanting to get the new shiny is not by
itself a sufficient reason to start a major migration project. It may be harder to
quantify the advantages for a build system compared to things like programming
languages and third party libraries. In the end it’s really not that different when
you realise that build definitions are just code. The basic reasons and payoffs are
mostly the same for changing build systems as they are for changing the “core”
code.

14.1.1 Performance issues

The time it takes to compile a software project depends mostly on the compiler,
thus the performance of a build system does not really matter as long as it can



152

14 CONVERTING AN EXISTING PROJECT TO MESON

spawn n parallel tasks on a machine with n cores. At least, that is a common
belief many experienced people hold. This is both reasonable and expected.
Unfortunately it is also completely false. Experience with porting projects from
existing standard solutions shows that the speedups can be tens of percent for
full builds and, amazingly, an order of magnitude for incremental builds.

A simple way to test the potential performance gains to be had is to do some
measurements. The first one is the no-change build time which measures how
long the build system takes to run when there is nothing to do. This should be
instantaneous, even for projects with tens of thousands of source files. Anything
more than about half a second should be a cause for concern. This might seem
like an insignificant amount of time but it actually matters. If you need to
wait for, say, five seconds every time you build, it causes disruption and brings
developers out of “the flow”. This time is also a fairly good estimator of build
performance in general. If no-change rebuilds are slow, most likely other parts
of the system are slow as well.

The next test consists of making a trivial change in one source file and recom-
piling. This should not take much more than the amount of time you’d need to
run the compile and link jobs by hand. If it does, then it implies a performance
problem somewhere in the build system.

The final test involves making a change that forces the build system to fully
reconfigure itself. This is typically done by editing one of the build definition
files. It is harder to give target times for this operation, but for small projects
it should be just a few seconds while huge projects might reasonably take tens
of seconds or even up to a minute, especially if they do things like try to update
dependencies over the network.

The final eyeball statistic you can use is to display the CPU load while doing
a full build. Once compilation starts all cores should be working all the time
until the end of the build. This may seem like something that should always
happen but again there are many cases where it does not. The classical approach
to writing Makefiles, so called recursive make, builds source code one directory
at a time. Typically a single directory specifies one target. When recursive Make
builds such a dir it can use all the cores when compiling individual source files,
but linking is done with just one CPU. Only after linking has finished does it
proceed to spawn processes in other directories.

14.1.2 Making changes is difficult

There are many custom build systems in the world. Some of them are written
fully from scratch, while others consist of customisation code written atop an
existing build system. Some of the largest code bases in the world are built with
these kinds of tools, mostly inside corporate environments. When this works,



14.2 MAKING SENSE OF AN EXISTING BUILD SYSTEM

it can be an extremely powerful development tool. What seems to happen in
practice is often quite different.

Usually these tools are written to replace an old system that is no longer
working. The people doing the work are under stress to make the new system
work as quickly as possible and do not have the luxury of planning and designing
for the long term. This tends to lead to systems that solve the current problems
quite well, but do not provide for future extensibility. By itself this would not
be a problem. However as time passes the original developers transfer to other
teams and even leave the company. Little by little the institutional knowledge
of how to work the system gets lost and the people who can reasonably make
changes to it get fewer and fewer. Extensive documentation would help to com-
bat this issue, but most internal corporate projects tend to provide only scant
documentation, if any.

Projects do not stand still, though. They become ever larger and need more
features. In the worst case this causes the system to decay and end up with a
situation where making any changes is extremely hard, so they are not done and
as a result all developers on the project suffer. If, on the other hand, the custom
solution is kept up to date, it incurs an ongoing maintenance burden. Whether
this is beneficial or not depends on the use case.

14.1.3 Lack of documentation and integration

Perhaps the biggest problem of bespoke systems of any kind is that it can be
difficult to find documentation on using them. In addition to the lack of internal
documentation mentioned in the previous subsection, there is also the problem of
external documentation. The more custom the system is, the harder it is to find
help using external sources of information. Web search engines and discussion
forums can be completely useless for debugging problems with uncommon or, in
the extreme case, company confidential tools.

Similarly it is a lot harder to make custom tools work together with other
tools. Most IDEs integrate well with the most common build tools, but making
them work with custom ones might take some work and the end result is rarely
as smooth as the one for popular tools.

14.2 Making sense of an existing build system

The first step in action is understanding. For legacy systems this might be more
difficult than expected. Build systems that have gone unmaintained for a while
have the tendency of becoming quite convoluted. A rough overview of such
setups can be seen in Figure 14.1.

153



154

14 CONVERTING AN EXISTING PROJECT TO MESON

C

‘ o "o
sources —> — output

( happens

Figure 14.1: The architecture of a typical unmaintained build system.

In the worst case the existing build system may consist of tens of thousands of
lines of custom code, possibly in an esoteric programming language. Deciphering
what it is doing might take weeks of full time work. It is usually difficult to justify
this amount of time to reverse engineering. It might be even harder to find a
person willing to do it. Fortunately there is an alternative approach that can be
used in almost all cases.

The unifying thing about build systems is that eventually they reduce to
calling compilers and linkers to do the actual work. The command lineinterface
for those tools is standard and fairly readable. All build systems also provide
a way to get that information in text form. For example Make can be run in
verbose mode so it prints all commands it runs to the terminal. Different Make
implementations might have different ways of enabling it, but this information is
readily available via documentation and Internet search engines. Once you know
all the compiler flags the project uses to build its sources, reimplementing that
in Meson is a lot simpler than trying to understand the innards of the existing
system.

The same approach can be used in more general ways. The Meson source code
ships with a file called tools/ac_converter.py, which can be used to convert
GNU Autotools configuration checks to Meson. Autotools is implemented in a
mixture of shell, Perl, Make and a special text processing language called m4.
Configuration tests written in this system can not be reasonably machine parsed,
they have to be executed. Fortunately the configuration check’s main output is
a file called config.h, which has a very rigid format. The converter script
reads that file, detects what features the original script was trying to detect and
generates the equivalent checks in Meson code. This typically saves a fair bit of
work in conversion projects.

Many conversions benefit from custom conversion tools. Almost every build
system has some sort of a human readable syntax to specify which sources go



14.3 BUILD TASKS ORDERED BY DIFFICULTY

into which targets. A simple text-based script can typically be used to extract
most of this information and write it out in Meson form. This is doable and
beneficial because the script does not need to be able to parse the entire file
or even to be fully correct. Being able to translate 90% or more of the build
definitions and fixing the rest by hand might make writing a custom converter
script worthwhile.

14.3 Build tasks ordered by difficulty

As we have seen in this book, there are many different steps to take when going
from source to a fully built binary. Some of them are more difficult to convert
than others and each of them have their own quirks and tricks to be aware of.
Below, we’ll go through them starting with the easy ones and ending with the
most difficult ones.

14.3.1 Target definitions

The bulk of most build files are target definitions. This includes things like
which sources go where, what include directories and compiler flags they need
and so on. Perhaps surprisingly this is usually the easiest part of any conversion.
As discussed in the previous chapter, it may well be possible to create a script
that does the bulk of the work. Even though this part is easy, it may be quite
laborious and, at worst, tedious. Trying to do a one-shot conversion with just
one person runs a high risk of developer burnout.

14.3.2 Configuration

Converting configuration steps is more difficult than target definitions, because
they often contain custom code. Because of this it can not be automated to
the same degree. Some human brain power is always required for these tasks.
Fortunately most projects have noticeably fewer configuration steps than build
targets.

14.3.3 Source generation

This is where things start to get tricky. Compiling executables that are then
used to generate more source code becomes more and more common as project
size grows. These cases can still be handled by following the guidance discussed
in Section 11.4. A more problematic case happens with ad hoc source generation
and manipulation steps. This is especially prevalent on projects that build with
Make.

155



156

14 CONVERTING AN EXISTING PROJECT TO MESON

As the build steps in Make are basically shell invocations, it is tempting to
embed source generator and manipulation commands inside Makefiles by using
tools like Sed, Grep, Awk and Perl. These pipelines typically exist either to
generate code or postprocess it to work around deficiencies and missing features
of other programs.

It is usually recommended to get rid of these pipelines. The recommended
approach is they should be rewritten in Python, which is usually faster and
more performant, especially on Windows. If this is not possible or feasible, they
should at least be extracted to standalone scripts. This cleanup operation can
be done entirely in the existing build system before any other conversion work
is started. It improves readability and the standalone scripts can be developed
and debugged in isolation. Shell pipelines embedded inside Makefiles are only
executed when the entire build is run, which makes for a slow and unpleasant
development experience.

14.3.4 Data files

Generating and installing data files is similar to source generation with one
important caveat: incorrect source generation is detected immediately as com-
pilation errors but broken data or missing files can only be detected at runtime.
If you are very lucky they are detected before getting shipped to end users.

Large programs may need an extensive set of configuration and data files
to function. Worse, they might need to be in specific locations with specific
names. As the old system has always put them in the right place, the code
might not handle missing or malformed data files gracefully (as there has never
been the need to check for this). This may very well lead to a case where the
build succeeds and the program runs but then fails spuriously in a way that
no-one can explain. It might even be that the issue is not in the data files, but
is instead caused by some differences in compilation. In any case if this happens
you can’t really know why.

There is a fairly simple trick for debugging these problems. First you con-
figure, build and install the program using the old system as usual. Then you
delete all executables, libraries, plugins and other built code from the final install
location. With this preparatory step done you take a fresh checkout of the code
and remove all data file install commands from the new build definitions (if any
had been written). Then you build it and install it over the previous install.
This gives you an install that has all the binaries from your new setup but all
data files from the old one. If issues still exist, you know that they must be in
the compilation phase. If not, then the problem lies in the new build system’s
data file generation and install steps.



14.4 CONVERSIONS INVOLVING AN ENTIRE TEAM

14.3.5 Build tree layout requirements

This case is particularly nasty, because it combines the previous three into one:
an executable that is used to generate sources that requires many configuration
files to build and which must be in specific directory paths to work. In the simple
case the data files are already in the correct format and layout inside the source
tree, but sometimes they are not. Meson is quite rigid in how files are laid out in
the build dir. This is highly beneficial when switching between different Meson
projects, because they all work in roughly the same way. The downside is that
sometimes cases such as these can not be directly supported and require code
changes in the project being converted.

Typically these sorts of requirements stem from the fact that existing tooling
was not at the same level as it is now. For example the project might have its
custom tooling to generate data from XML files. Rather than trying to convert
these programs to conform to new requirements, it might make sense to rewrite
them in a scripting language like Python instead. String manipulation and XML
processing are usually a lot more pleasant to do in Python than most compiled
languages. This has the added benefit that cross compilation becomes easier as
the source generators do not need to be built during compilation, the scripts can
instead be run directly.

14.4  Conversions involving an entire team

Small and medium projects can usually be converted in a single shot. As the
project and team size grows, this is no longer possible. In addition to the sheer
amount of work needed, other factors start to come into play. Developers must
be trained to use the new system, mechanisms need to be put in place so that
both the old and the new setup are kept working simultaneously and so on. This
requires a coordinated and carefully designed transition plan.

Perhaps the most important piece is a working CI setup. If the project does
not have CI, then setting one up takes priority over any build system conversion
steps. Once a CI system is running it should be set to build both the code with
both the old and the new build system. All additions to the main branch should
be gated via this mechanism. This ensures that the conversion does not break
when someone changes the build definitions of one system and forgets to do it
on the other one.

The conversion should start at the lowest levels and proceed iteratively up-
ward from there. In this way the parts of the project that have been converted
can be built even though the end result does not fully work. Most projects have
some kind of a foundational library that is used by most other pieces. The con-
version should start with this and should be done either by one person or a small

157



158

14 CONVERTING AN EXISTING PROJECT TO MESON

team of experts. Typically these libraries may have unusual build requirements,
source generation and are thus the most difficult ones to convert.

Once this is done the people who performed the conversion should gather the
experience gained and write documentation. It does not need to be thorough
but should cover at least the following:

e How the build is configured, compiled and installed.
¢ An outline of how a build target should be set up.

e How an existing build target should be mapped from the old definition to
the new one.

e Description of all tools that have been created to help the transition.

o A list of typical problem cases that may come up, how to fix them and
where to get help if problems occur.

e Any other useful tips and tricks as they are discovered.

With this the rest of the work can be split among the entire team. These
tasks can be done inbetween other tasks during regular work or assigned via the
usual tasking mechanism, be it scrum planning or Jira tickets. This approach
has several advantages. It spreads the work to many people so the load on people
running the conversion is reduced. Converting existing modules also serves as
training on how to use the new build system and hands-on work is usually
a better way of learning than just reading documentation. There is also less
pressure on learning the new system as any mistakes won’t cause problems in
the end product. Final versions are still being built with the old system, which
remains the same.

This phase of the conversion should be as short as possible. Needing to
update both the old and the new system is taxing. Once all parts are converted,
it is time for the moment of truth: validating that the output of the new system
is functionally identical to the old one. This typically uncovers a bunch of defects
in the new build setup. Once all of these are fixed, the build system conversion
is finished and the new one can be taken into use.

The final step is deleting the old build system entirely from the system. The
most popular approach is to make a major release and start the new development
cycle by deleting the old build system. Others may choose to keep both the old
and new ones around for one full release cycle as a safety precaution. Both
of these choices are valid and choosing between them comes down to project
requirements and desired level of risk aversion.



Chapter 15
A library sample project

Building and installing a library is simple but not sufficient for real world usage.
In this chapter we look at all the additional work it takes to make a library that
works seamlessly on multiple platforms and build setups. This may seem like
a lot of work, but if you intend to provide a library that other people can use
(which is what most libraries strive for), it is worth spending the effort. The
easier it is for people to use your work, the more likely they are to adopt it for
their own use.

15.1 Design requirements

The library itself will be called Ducky and it represents a very simple, object
oriented concept of a rubber duck. There are three things you can do with a
rubber duck object:

1. Create it.

2. Squeeze it.

3. Destroy it.

The actual requirements for our implementation are the following:
e The API should be in plain C.

e Provide a stable ABI.

e The implementation should be in C++.

o All internal implementation details should be hidden.



160

15 A LIBRARY SAMPLE PROJECT

e Conform to all OS installation guidelines.

o The library must be usable both when installed on the system and when
used as a subproject.

e The project should be usable both as a shared and as a static library.

15.2 The external API

A software project is usually created in one of two ways: either inside-out or
outside-in. The former approach is the common one, where developers start
working on a problem, writing code, and trying to understand the problem
domain. After a while this produces a code base that solves the given problem.
Then an API is created on top of this code and given out to other projects to
build on. This approach works fairly well and is aligned with the agile approach
of continuous improvement. The notable downside is that there is rarely enough
time to design a good API on top of an existing code base, because it might
require a lot of refactoring. Thus the API might end up poorly designed exposing
all the architectural design layers and missteps that the library went through in
its early days.

The outside-in approach works in the opposite direction by first coming up
with a good user interface for the problem in question. After that the implemen-
tation’s job is to provide the functionality specified by the API. This approach
usually creates nicer APIs that don’t leak internal implementations as much,
meaning the implementation can be changed more freely. Unfortunately this ap-
proach is typically more difficult, since it requires up-front knowledge about the
problem space. Sometimes a predesigned API turns out to be unimplementable
or require major changes.

In the real world most projects are a hybrid between these two approaches.
In this chapter we are going to use the second approach, since we don’t care
what the actual API is, only what steps are needed to provide it.

15.2.1 The public header setup

The main entry point to any library is the header file it provides. Ducky’s header
is meant to be included like this:

#include<ducky/ducky.h>

The header has one struct definition and three function definitions, which
together form the whole API. The struct definition is simple:



15.2 THE EXTERNAL API

typedef struct _Ducky Ducky;

This declaration might be confusing for people who do not have earlier ex-
perience with C API declarations. C does not have classes, only structs. This
defines the Ducky “object”, though it goes about it in a roundabout way.

In C if you have a struct Foo and you wish to define a variable of that type,
you need to write struct Foo varname. Needing to write struct Foo all the
time gets tiresome because what you’d really want to write is just Foo varname.
This can be achieved with the typedef keyword, which creates new typenames.

The last piece of the puzzle is the declaration _Ducky, which is shorthand for
saying that somewhere in the code there is a definition of a struct called _Ducky.
Thus the declaration says the following: “define a new type called Ducky as
an alias to a structure called _Ducky, whose definition is elsewhere”. This is a
common C technique called an opaque type declaration. It affords us to define
the API fully without specifying the layout of the Ducky object. In our case the
Ducky object will be implemented in C++, so it could not even be defined in C.

With the data type defined we can now define the functions that make up
the API.

Ducky* ducky_create(void) ;
void ducky_squeeze (Ducky* d);
void ducky_delete(Ducky* d);

The API follows the C convention of prefixing all function names with the
library name to prevent symbol clashes.

15.2.2  Symbol visibility

As discussed in Chapter 2 every function and global variable creates a symbol.
In order to use the functionality of a library, the user must be able to access
those symbols. This gets problematic with shared libraries, because there are
two different ways to handle this. Both of them are widely used so a portable
solution must support both.

e In Microsoft’s Visual Studio toolchain, all symbols are hidden by default.
Only those that are explicitly marked as exported will be available in the
shared library.

e In most other toolchains all symbols are exported by default, even those
that are only meant to be used internally.

Preventing the export of symbols that are only used in the implementation
is important for three reasons. First of all it prevents users from accidentally

161



162

15 A LIBRARY SAMPLE PROJECT

Table 15.1: Declarations for symbol visibility. Some Windows compilers also
support the unixlike syntax.

When compiling When using
Windows __declspec(dllexport) __declspec(dllimport)
Unixlike __attribute__
((visibility ("default")))

calling into internal functions that they should not be using. The second is
that it makes the exported symbol list smaller which speeds up linking. In
our case we export only three symbols (the function names) but almost any
program written in C++ creates hundreds, thousands, or in extreme cases tens of
thousands of symbols for its internal use. The final advantage is that it produces
slightly faster code, since the compiler can apply some optimisations to symbols
it knows to be hidden that it can not apply to public symbols.

There is no clean and portable way of dealing with this problem. It must
be solved with the C toolchains’ biggest hammer: preprocessor macros. The
public header provided by Ducky is used in two different ways: when building
the library itself and when included from a different target that wants to use
the library. The exported functions must be qualified with platform-specific
declarations. The exact definitions are listed in Table 15.1.

Expanding all of that out to code we come up with the following macro forest
that can be found at the top of the ducky.h header.

#pragma once
#if defined _WIN32 || defined __CYGWIN__
#ifdef BUILDING_DUCKY
#define DUCKY_PUBLIC __declspec(dllexport)
#else
#define DUCKY_PUBLIC __declspec(dllimport)
#endif
#else
#ifdef BUILDING_DUCKY
#define DUCKY_PUBLIC __attribute__((visibility("default")))
#else
#define DUCKY_PUBLIC
#endif
#endif



15.3 PRECOMPILED HEADERS

extern "C" {
#endif

#ifdef cplusplus

typedef struct _Ducky Ducky;

DUCKY_PUBLIC Ducky* ducky_create(void);
void DUCKY_PUBLIC ducky_squeeze (Ducky* d);
void DUCKY_PUBLIC ducky_delete(Ducky* d);
#ifdef __cplusplus

}
#endif

After the exported functions get tagged with these declarations they look
like the following;:

DUCKY_PUBLIC Ducky* ducky_create(void);
void DUCKY_PUBLIC ducky_squeeze (Ducky* d);
void DUCKY_PUBLIC ducky_delete(Ducky* d);

The Ducky definition does not need to be tagged, because it does not generate
any symbols, it is just a data type declaration.

This declaration works via the preprocessor symbol BUILDING_DUCKY. If it
is set, then the header is being used when building the library and thus the
DUCKY_PUBLIC definition gets expanded to the platform specific declaration to
export the given symbol. If the symbol is not defined, then the header is being
used to consume the library and DUCKY_PUBLIC gets expanded to a symbol im-
port declaration. This requires that we add the definition -DBUILDING_DUCKY=1
when building library sources. This will be handled later in this chapter.

15.3 Precompiled headers

C++ projects are notorious for their slow compile times. One main reason for
this is that header files contain a major fraction of all functionality and they
are parsed and instantiated for every source file that uses them. Precompiled
headers are a tool designed to mitigate this problem by parsing the headers only
once and storing them in a binary format that subsequent compilations can then
use directly. Precompiled header files are also known as PCH files.

163



164

15 A LIBRARY SAMPLE PROJECT

Meson has builtin support for using precompiled headers. The end user only
needs to write the precompiled header file for each target and specify that it
should be used when building a target. A precompiled header is nothing more
than a regular header file that has #include declarations for all the headers that
should be precompiled for the target. In this project we only use a PCH file for
the main library and since the only external functionality we use is text printing,
the PCH file is spartan:

#include<iostream>

Do not #include the PCH header file in any source file. Doing so can lead
to breakages and even compilation slowdowns. Meson will take care of all the
necessary magic behind the scenes. The setup is fairly complex and relies on the
fact that users have not added any references to the PCH file in source files.

15.4 The C <> C++ bridge

The actual C++ implementation is simple, consisting only one class. Its name is
RubberDucky to avoid confusion with the C side struct.

class RubberDucky final {
public:

RubberDucky () ;
~RubberDucky () ;

void squeeze();

};

The actual challenge comes when we need to make this C++ implementation
appear to the outside world as if it was implemented in plain C. To achieve this
we need to write some code that takes care of this domain translation. This is
sometimes called a bridge, an implementation of the adapter pattern[7]. Let’s
start with the create function.

Ducky* ducky_create() {
RubberDucky *r = new RubberDucky() ;
return reinterpret_cast<Ducky*>(r) ;

Both lines in this function contain a construct that is discouraged in modern
C++. Specifically using new directly rather than something like a std: :unique_ptr



15.5 TESTS

and the use of reinterpret_cast. This is typical for code at language bound-
aries.

The first line is fairly simple, as it only creates a new Ducky object. The
second line is more interesting. It converts the RubberDucky pointer into a plain
Ducky pointer (and thus to a struct _Ducky pointer), which is then returned
to the caller. It may seem confusing that you can convert a C++ object to a C
struct that is not actually defined anywhere. The reason this works is that even
though the object types are completely different, pointers to them have the same
underlying representation. The cast does not, in fact, produce any code. The
pointer value returned by the new operator is returned directly.

This sort of code is extremely tricky and error prone. It is way too easy to
accidentally trigger undefined behaviour with these operators leading to weird
and hard to diagnose bugs. This case works because the only thing the caller of
this function can do with the return value is pass it back to this library as an
argument. Then we can cast it back like this.

void ducky_squeeze (Ducky* d) {
RubberDucky *r = reinterpret_cast<RubberDucky*>(d) ;
r->squeeze() ;

This cast is the inverse operation of the cast in the constructor. Once we
have a C++ object pointer we can call its member functions. The delete method’s
implementation is almost identical.

void ducky_delete(Ducky* d) {
RubberDucky *r = reinterpret_cast<RubberDucky*>(d) ;
delete r;

Even for this simple example the language interop code requires expert level
domain knowledge. Therefore it is always a good idea to keep this code in its
own file away from the actual “business logic” code.

155 Tests

Since the library provides so little functionality, writing tests for it is simple.

#include<ducky/ducky.h>

int main(int argc, char *xargv) {

165



166

15 A LIBRARY SAMPLE PROJECT

project source root

—{ 7 include
— ducky
ducky.h < public header
L meson.build
{1 src
— pch
ducky_pch.h << PCH header
——ducky_1impl.cpp
——ducky_api.cpp
——ducky_1impl.h < private header
L—meson.build
—{ 7 tests
——ducky_test.c

L—meson.build
L meson.build

Figure 15.1: File layout of sample library project. The private header must not
be exposed to users of this library.

Ducky *d = ducky_create();
ducky_squeeze(d) ;
ducky_delete(d);

return O;

There is one catch, though. Since our library exposes a C API, we must test
that the library can be used from plain C. Because this the test executable is
written in C and not C++.

15.6 Project layout

The layout of the project with all files and directories can be seen in Figure 15.1.
At this point we have all the information necessary to write out the final build
definition files.



15.6 PROJECT LAYOUT

15.6.1 The include directory

The build definition for the include directory is the simplest of them all. It
consists of only one directive.

install_subdir('ducky', install_dir: get_option('includedir'))

We use the install_subdir function to install the ducky directory and all
its contents to the global header directory. In practice this installs the project’s
one public header file to /usr/include/ducky/ducky.h.

15.6.2 The source directory

Building the actual library gets more difficult, but not by much. There is still
only one Meson function invocation.

ducky_lib = library('ducky',
'ducky_impl.cpp', 'ducky_api.cpp',

include_directories: ducky_inc,

install: true,

cpp_args: '-DBUILDING_DUCKY=1"',
cpp_pch: 'pch/ducky_pch.h',
gnu_symbol_visibility: 'inlineshidden',

We use the library function rather than, say, shared_library in order to
allow the end user to decide whether to build a shared or static library. The
library name and source definitions follow the standard values on each platform.

Building the library requires access to the public headers, which come via
the ducky_inc variable. We also set install to true so the resulting library
gets installed.

The precompiled header to use is specified with the cpp_pch kwarg. The
header itself is in a separate pch subdirectory. Meson requires you to put the pch
file in a separate subdirectory as it is a requirement to make precompiled headers
work reliably on all platforms and toolchains. Do not, under any circumstances,
add the pch directory to any target’s include directories. Meson will take care
of all include path manipulation for PCH files.

As was discussed in Section 15.2.2, we need to set a compiler define when
building the library so the macro definitions can do their magic. This is set
with the cpp_args keyword argument. The last keyword argument is for GCC
and related compilers. They make all symbols public by default. Since we don’t
want that we set all symbols to be hidden with inlineshidden. The difference

167



168

15 A LIBRARY SAMPLE PROJECT

between that and plain hidden have to do with how implicitly defined functions
in C++ classes get handled. Since we only export a plain C API we don’t want
those exported so we pick the stronger value.

15.6.3 The tests directory

The definition for tests is almost as simple as it was for the include directory.

test_exe = executable('ducky_test', 'ducky_test.c',
dependencies: ducky_dep)
test ('ducky_test', test_exe)

First we build a test executable and then define a test that runs it. The only
unexpected piece is the dependency object ducky_dep. That is defined in the
top level meson.build file, which is what we’ll examine next.

15.6.4 The root directory

This is the final file and where the entire build definition comes together. It is
the longest and most complex file of all, but it should still be fairly readable and
understandable.

project('ducky', 'c', 'cpp',
version: '0.1"',
default_options: ['cpp_std=c++14'])

subdir('include')

# Needed to build the library.

ducky_inc = include_directories('include')
subdir('src')

# Needed to be usable as a subproject.

ducky_dep = declare_dependency (
include_directories: ducky_inc,
link_with: ducky_lib)

subdir('tests')

# Needed to be discoverable when installed.
pkg_mod = import('pkgconfig')
pkg_mod.generate (

name: 'Ducky’',



15.7 CREATING RELEASES

filebase: 'ducky’',
description: 'You are never alone with a rubber duck.',
libraries: ducky_lib,

The definition starts with the standard project declaration and then recurses
in the include subdirectory so the header installation declaration gets processed.

Then it creates an include_directories object for the header directory
which is needed in all compilation jobs in this project. Then we descend in the
src subdirectory where the library gets built.

One of the main requirements we had was that this project must be usable as
a Meson subproject. Most of that work is done in the next declare_dependency
function call. It creates a dependency object that anyone can use to build against
this library. This definition consists only of the include directory and one library
to link against. This object is also used to build the test executable as mentioned
earlier. In this way we also verify that the dependency object is properly usable.
If it was broken, the test executable would not build.

The last piece is the pkg-config declaration. Most things in it are self-
explanatory except perhaps the filebase keyword argument. It is used to define
the name of the installed pkg-config file, which specifies its pkg-config module-
name. In this case the filename will be ducky.pc. The recommended practice
is that the module’s name should only consist of lower case letters, dashes and
numbers and it should be the name of your project in lower case if possible.

15.7 Creating releases

The project is now buildable and tested to work. The next step is to create a
release that can be given to other people to use. Some people do this merely
by adding a tag in their source repository and have people use that. The other
approach is to create a distribution archive, also known as a release tarball, which
contains the same files as the tagged version, but no revision control history or
metadata. This makes it small and self contained.

Release archives are required for many policy and legal requirements so it is
considered good form to provide them for every release. Merely putting all source
files in a Zip archive is not sufficient, though, since there are specific naming
requirements. The archive file name must be projectname-version.tar.xz,
which is a tar file compressed with the LZMA compression algorithm. Until
a few years ago most archives used the Zlib compression instead and had the
file extension .gz. Since then there has been a shift to the LZMA format as it
provides noticeably better compression ratios. Inside the archive all files must
be placed in a directory called projname-version.

169



15 A LIBRARY SAMPLE PROJECT

Meson provides the dist command that automatically creates a release
archive in the current form.
170 $ ninja dist
[0/1] Creating source packages
Cloning into '<<builddir>>/meson-dist/ducky-0.1'...
done.
Testing distribution package
<<builddir>>/meson-dist/ducky-0.1.tar.xz
The Meson build system
Version: 0.50.999
Source dir: /tmp/tmpqj2pnckg/ducky-0.1
Build dir: /tmp/tmpyp2xv04p
Build type: native build
Project name: ducky
Project version: 0.1
Native C compiler: cc (gcc 8.2.0)
Native C++ compiler: c++ (gcc 8.2.0)
Build machine cpu family: x86_64
Build machine cpu: x86_64
Build targets in project: 2
Found ninja-1.8.2 at /usr/bin/ninja
[7/7] Linking target tests/ducky_test.
[0/1] Running all tests.
1/1 ducky_test

Ok:

Expected Fail:
Fail:

Unexpected Pass:
Skipped:
Timeout:

Full log written to /tmp/tmpyp2xv0O4p/meson-logs/testlog.txt

[0/1] Installing files.

Installing subdir /tmp/tmpqj2pnckg/ducky-0.1/include/ducky to
/tmp/tmprx89rf6h/usr/local/include/ducky

Installing /tmp/tmpqj2pnckg/ducky-0.1/include/ducky/ducky.h to
/tmp/tmprx89rf6h/usr/local/include/ducky

Installing src/libducky.so to
/tmp/tmprx89rféh/usr/local/1ib/x86_64-linux-gnu




15.8 EXERCISES FOR THE READER

Installing /tmp/tmpyp2xv04p/meson-private/ducky.pc to
/tmp/tmprx89rf6h/usr/local/lib/x86_64-linux-gnu/pkgconfig

Distribution package <<builddir>>/meson-dist/ducky-0.1.tar.xz
tested.

This run shows that in addition to creating the archive, Meson also verifies
that it works by extracting, compiling, running the full test suite followed by
running install. Only if all these steps are successful does it create the output
files in meson-dist directory.

$ 1s meson-dist

ducky-0.1.tar.xz ducky-0.1.tar.xz.sha256sum

In addition to the archive there is a checksum file in the format required
by some upload processes. An optional, but strongly recommended, step is to
cryptographically sign the output archive with a tool such as GPG. This way
users of your software can reliably verify that they have downloaded an authentic
release rather than a malicious one. The release is now ready to be shared with
the world.

15.8 Exercises for the reader

This library setup is simple and can be expanded in many ways. Here are some
possible exercises for the reader in increasing order of difficulty.

1. Verify that the library also works when used from C++ by adding a new
test executable.

2. Generate the header file from a template file with configure_file so that
it contains the project’s version number as a preprocessor define.

3. Create a version 2 of the Ducky library so that both versions are parallel
installable on the same system.

4. Expand the above so that both versions of the library can live inside the
same process.

171






Chapter 16
Practical tips for real world
projects

Whenever you start using a new piece of technology, you eventually find indi-
vidual usage tricks and processes that are generallly useful but are not strictly
classifiable. That is where this chapter comes in. It lists various real world use
cases, some things to try and, just as importantly, things not to do.

The information in this chapter is probably most useful only after you have
personal usage experience with Meson. First timers might consider reading this
chapter again after having used Meson in their projects for a few weeks.

16.1 Use options rather than hardcoding compiler flags

Let’s start this chapter by looking at the most common antipattern for new
Meson users. Many developers have gotten used to configuring their builds by
manually setting command line arguments. The most common ones include -02,
-g, -Wall and -pipe. These can be injected many different ways including envi-
ronment variables when first configuring the build dir, add_project_arguments
and cross and native files.

None of these should be used. They are not supported by all compilers and
are thus nonportable. In addition they clash with Meson’s builtin options for
these, which are optimization, debug and warning_level, respectively. Meson
will add -pipe automatically when the underlying compiler supports it!. An
additional bonus is that you can change these values on the command line via
meson configure. Specifying these in build files means having to edit them to
make any changes.

ITh -pipe flag did improve compilation speeds in the 90s, but it is arguable whether it
provides performance benefits any more and should be dropped altogether.



174

16 PRACTICAL TIPS FOR REAL WORLD PROJECTS

16.2 Shipping pregenerated files

The recommended workflow for Meson is to generate all necessary files on de-
mand every time rather than storing and using pregenerated intermediate files.
Sometimes this is cumbersome, though, especially if you need a lot of heavy
third party dependencies to generate the output files. In practice this seems to
be most common for man pages. To make things easier for users, you’d want to
enable the following work flow:

e During development, build man pages from sources.

e When generating a release tarball, add the generated man pages in the
release.

e When building the final release, install the embedded man pages rather
than generating them.

This can be achieved with the following build definition file.

project('manpregen', 'c',
version: '1.0.0')

fs = import('fs')
mandir = get_option('mandir') / 'manl'’

if fs.exists('program.1')
message ('Installing pregenerated manpage.')
install_data('program.1',
install_dir: mandir)
else
# Only try to look up external dependencies
# inside this block, when we know that we actually
# need them.
gen = find_program('heavy_program.py')
message ('Building manpage from scratch.')
custom_target ('manpage',
output: 'program.l',
command: [gen, '@OUTPUTQ'],
install: true,
install_dir: mandir)
endif



16.2 SHIPPING PREGENERATED FILES

meson.add_dist_script('dist_script.py')

175

The implementation uses the £s module, whose documentation can be found
in Section 20.3. The actual logic is readily understandable. if a pregenerated
man page can be found in the current source directory, then install it directly,
otherwise generate it from sources as usual. The only remaining problem is how
to get the pregenerated file inside the release archive. This is done by using the
meson object to add a dist script. See Section 18.12.1 for details.

Its contents are in all simplicity the following:

#!/usr/bin/env python3
import os, shutil
gen_file = os.path. join(os.environ['MESON_BUILD_ROOT'],

'program.1')
shutil.copy(gen_file, os.environ['MESON_DIST_ROOT'])

All it does is use the environment variables set by Meson to copy the gener-
ated file from the build directory to the staging directory, which will be turned
into the final release archive. When the archive is built, the log output shows it
is working as expected:

$ meson build

The Meson build system

Version: 0.54.999

Build type: native build

Project name: manpregen

Project version: 1.0.0

C compiler for the host machine: cc

(gcc 9.3.0 "cc (Ubuntu 9.3.0-10ubuntu2) 9.3.0")
C linker for the host machine: cc 1d.bfd 2.34
Host machine cpu family: x86_64
Host machine cpu: x86_64
Message: Installing pregenerated manpage.
Build targets in project: 1
Found ninja-1.10.0 at /usr/bin/ninja




176

16 PRACTICAL TIPS FOR REAL WORLD PROJECTS

16.3 Do not treat files as strings

Many people coming from other build systems, especially those used to writing
plain Makefiles, often think about the build in terms of strings and command
line arguments. While one can write working Meson files in this way, it is not
recommended. As an extreme example, several people have written build files
like these when first porting their projects to Meson.

# Bad example, do not do this!

sources = [meson.current_source_dir() / 'filel.c',
meson.current_source_dir() / 'file2.c',
meson.current_source_dir() / 'file3.c',

# In a different directory.
executable('program', sources)

This way of writing files is unreadable and requires a lot of unnecessary
work. The intent of the author is clear in that they want to define sources in one
directory and use them in a different one. In string-based build systems building
full paths like this is the only feasible way to do it. The “mesonic” way of doing
this is to use the files function.

sources = files('filel.c', 'file2.c', 'file3.c')

# In a different directory.
executable('program', sources)

Using files provides three main advantages. First, it is more readable.
Second, it validates that all files referred by the arguments exist. Third, the
result object can be used in any other directory and Meson will automatically
expand the paths to point in the correct place.

Another thing people coming from Make-based systems often seem to do is
to build command line arguments by hand. A typical case might go like this:

# Bad code, do not do this.
sourcesl = ['inputl', 'input2', ...]
sources2 = ['inputa', 'inputb', ...]

custom_target('custom',
output: 'output.dat',
command: ['script',



16.4 RUNNING PYTHON SCRIPTS THAT USE EXTENSION MODULES

meson.current_source_dir(),
meson.current_build_dir() / 'output.dat']
+ sourcesl + sources2)

The generator script would then take these arguments, generate the input
files manually and write the output file. Just like above this is not very read-
able, but, even worse, is not reliable either. Because the arguments are strings,
Meson has no way of knowing what the input files are and thus can not set up
dependencies properly. If you change one of the input files, the output file is not
regenerated. This is a serious error and the build system has no way of getting
it right. The target should instead be defined like this:

sourcesl = files('inputl', 'input2', ...)
sources2 = files('inputa', 'inputb', ...)

custom_target ('custom',
output: 'output.dat',
input: sourcesl + sources2,
command: ['script',
'@OUTPUTQ' ,
'@INPUTQ']

Now Meson knows all the inputs and outputs and can set things up so that
the output file is generated if and only if any of its input files change.

16.4 Running Python scripts that use extension modules

Most scripts that are run in builds are self contained and can easily be run
directly. Things get more complicated when they start requiring external de-
pendencies. If they come from the system things will still work out of the box
(assuming the dependencies are installed), but things are not as simple if the
dependencies come from your own project. In this section we’ll look at how to
make Python module imports work, but the same general approach works with
almost all other scripting languages.

The common case is that you have a script such as test/script.py and it
imports a module in the directory pymod/depmod. If you try to run the script
directly, it will fail with a module import error that looks something like this:

Traceback (most recent call last):

File "/path/to/script.py", line 5, in <module>

177



178

16 PRACTICAL TIPS FOR REAL WORLD PROJECTS

import depmod
ModuleNotFoundError: No module named depmod'

There are three different ways of solving this problem, all with their own
pros and cons. The arguably simplest solution is to keep all your Python code
in a single directory. This makes Python treat them all as part of the same unit
and they can import functionality from each other directly. In this example this
would be done by moving script.py inside the pymod directory. The downside
is that scripts are no longer next to the place there are used in, so you cant use
them with a simple find_program(’script.py’) but instead have to write a
relative path to the module dir.

The second approach is to alter the module import directories from within the
script at runtime. The exact details can be found in Python’s documentation,
but roughly you would do something like this:

import sys
my_mod_dir = calculate_path_to_moddir ()
sys.path.append (my_mod_dir)

# Rest of the code goes here.

The main downside of this approach is that you should never use it in scripts that
get installed via, e.g. the Python Package Index (or PyPi). System dependencies
that change the module lookup path are highly frowned upon. This is not a
problem with internal scripts, such as test programs.

The third solution is to set the environment variable PYTHONPATH to point to
your internal Python modules. Here’s how it would be done for a unit test.

test ('pythontest', find_program('script.py',
env: 'PYTHONPATH=' + meson.current_source_dir() / '../pymod')

If PYTHONPATH is needed in many different places, you’d probably want to set
it to a variable in the main meson.build file so it is available everywhere. This
approach could be considered “the most correct” but it has one major downside:
the script can no longer be run directly from the command line. You have to
always run it via Meson or set up PYTHONPATH by hand, which is a bit tedious.
If these limitations are not an issue in your use case, then this is probably the
approach you should go for.



16.5 MOVE EVERYTHING YOU CAN OUT OF BUILD FILES

16.5 Move everything you can out of build files

The last piece of advice in this book is going to be a bit counterintuitive. After
more than 150 pages of going through all the things you can do with Meson
build files, we are now going to look at how and when to not use them. The
basic rule for this is simple: whenever you can move something away from the
build definition file, you probably should do that. The build file should be as
much as possible about how your code gets built and as little as possible about
how the build needs to be adapted to the environment.

In many other build systems, these two things are intermixed. By contrast
Meson aims to provide builtin tools and features to keep these two concepts
isolated from each other. Say you have an embedded project that needs to build
on two different hardware platforms that require different compiler flags. A
“traditional” build system approach would lead to a build file looking like this:

# Bad code, do not do this.
if building for_platform_one
add_global_arguments('-DSOME_PLATFORM',
language: 'c')
else
add_global_arguments('-DOTHER_PLATFORM',
language: 'c')
endif

This works but is not very elegant. The more features like these you have
the more convoluted your build file becomes, eventually turning it into a mess.
The better way to achieve the same result is to move these flags to the cross
file’s [properties| section:

[properties]
c_args = ['-DSOME_PLATFORM']

Not only does this declarative approach completely gets rid of if/else
spaghetti but it has other benefits. Compiler arguments specified in the build
file are not used in things like compilation checks, whereas those defined in the
cross file are used. This is almost always what you want and this approach
makes it work out of the box. The separation is even more important for code
that is designed to be built as a subproject, especially on platforms not tested
by the original developer. A good rule of thumb to aim for is that people should
be able to build the project on new platforms without needing to edit the build
definitions. Sometimes it is not possible, but when it is it makes it a lot easier
for other people to consume your code.

179



180

16 PRACTICAL TIPS FOR REAL WORLD PROJECTS

There are many other places where this approach should also be taken. Per-
haps the weirdest is that some projects want to reinvent Meson’s builtin func-
tionality (as we saw in Section 16.1) for things such as debug info, sanitizers and
other things. This code is not only superfluous, but actively harmful because
they are confusing to new contributors, because their existing knowledge is not
transferable and they will try to use the builtin functionality. This will, at best,
maybe work and at worst will cause the two approaches to clash, burn and lead
to incomprehensible errors and a system that is broken but no-one can really
tell why or how it should be fixed. Fortunately the solution is simple: delete
all these custom things from your build files. The end result is less code and a
system that works more reliably.



Part Il:

The reference documentation






Chapter 17
Elementary object reference

The remaining chapters contain detailed description of Meson’s functionality.
The bulk of it consists of functions and methods. They are formatted in the
following way:

sample_function(args, ...) — return type

There are four pieces of information on each declaration. The first is the name
of the function or module, in this case sample_function. This is followed by
positional arguments, which are listed in the command, and keyword arguments
which are not. Instead any function that takes keyword arguments contains an
ellipsis (...) as its last argument and the actual arguments are documented
later in the section. Trying to cram keyword arguments on the same line would
take too much space and get quite messy. The last piece of information is the
return value of this function or none if nothing is returned. Most functions have
some sample code showing how they can be used. This is omitted for simple
functions that, for example, only return a specific string.

This chapter documents elementary objects such as integers, strings, files
and arrays. These are types that you could expect to find in most program-
ming languages. In other words they are not domain-specific types, which are
documented in the next chapter.

17.1 array object

An array is an immutable sequence of arbitrary objects, including other arrays.
Note that arrays can not be cyclical, that is, an array can not contain itself as
an element, even indirectly.

Arrays can be concatenated with the + operator.



17 ELEMENTARY OBJECT REFERENCE

new_array = ['a']l + ['b']
# new_array is ['a', 'b']

184
Individual elements of an array can be obtained by indexing or with the get
method described in Section 17.1.2. Negative indexes count backwards from the

end of the array. Trying to access an out of bounds object is a hard error.

x = [|a|’ 'b', 'C']

x[0] # Result is 'a'
x[-1] # Result is 'c'
x[4] # Index out of bounds => hard error
x[-4] # Index out of bounds => hard error

Since arrays can not be altered, the way to extend an array is to create a new
array and assign it to the same variable. Since this is such a common operation,
Meson provides the += operator as a shorthand.

x = ['a'l
x += ['b']
# x is ['a', 'b']

This is equivalent to the following code:

x = ['a'l
x=x+ ['b']

If x had been used the old value would remain in effect in all the places it
was used in. Changing x like this only affects uses of x from this point on.

17.1.1 contains(object) — boolean

Returns true if the array contains the object given as the argument.

Positional arguments

object The object to search for.

Usage examples

x = ['a', 1]
x.contains('c') # returns false



17.2 BOOLEAN

x.contains('a') # returns true

17.1.2 get(index, default_value) — object 185

This method behaves the same as indexing an array, but allows specifying a
default value in case the index is invalid.

Positional arguments

index An integer for the index that should be accessed
default_ value An optional value that is returned if the index is invalid, i.e.
out of bounds.

Usage examples

arr = [|a|, 'b', 'C']
arr.get (0) # Result is 'a', identical to arr[0]
arr.get (4) # Hard error.

arr.get (4, 'default') # Result is 'default'

17.1.3 1length() — integer

Returns the number of elements in this array. The count is not recursive, that
is, if any item in the array is itself an array, it is counted as one item regardless
of how many items it contains.

Usage examples

[1.length() # Result is O
['a'].length() # Result is 1
[['a', 'b', 'c']].length() # Result is 1

17.2 boolean object

A boolean object is either the value true or false.

17.2.1 to_int() — integer

Returns 1 if the boolean was true and 0 if it was false



186

17 ELEMENTARY OBJECT REFERENCE

17.2.2 to_string(true_string, false_string) — string
This method can be used to obtain a string representation of the boolean. The
default representations are the strings ’true’ or ’false’.

Positional arguments

true__string The string that should be returned for true.

false_ string The string that should be returned for false. Either both or
neither of these arguments must be defined. Having only one is a hard
€error.

Usage examples

true.to_string() # Returns 'true'
true.to_string('yes', 'no') # Returns 'yes'
false.to_string('yes', 'no') # Returns 'no'

17.3 dictionary object

A dictionary is a set of unique strings called keys each of which maps to a
specific value. This data type is also known as the associative array or a hash
map. Dictionaries are used in the same way as arrays.

d = {'keyl': 'valuel',

'key2': 'value2}
d['keyl'] # Result is 'valuel'
d['nonexisting'] # Hard error.

Just like arrays, dictionaries can be combined with + and +=. When two
dictionaries are added and both of them have the same key, the result object
will take the value from the latter.

dl = {'keyl': 'valuel'}

d2 = d1 + {'key2': 'value2'} # d2 has two keys

d3 = dl + {'keyl': 'mew'} # d3 has one key with value "new".
d3 += {'key3': 'value3'} # d3 has two keys

17.3.1 has_key(keyname) — boolean

This method tells whether a given string is used in the dictionary as a key (but
not value).



17.4 DISABLER

Positional arguments

keyname A string argument listing the key to be checked.

187

Usage examples

d = {'key', 'value'}
d.has_key('key"') # returns true
d.has_key('balue') # returns false

17.3.2 get(key, default_value) — object

Obtains the value for the given key with an optional value to return if the key
is not found.

Positional arguments

key is the key to look up.
default__value is an optional value to be returned if the key does not exist in
the dictionary.

Usage examples

d = {'key', 'value'}

d.get('key') # Returns 'value'
d.get('key', 'fallback') # Returns 'value'
d.get('bob') # Hard error

d.get('bob', 'fallback') # Returns 'fallback'

17.4 disabler object

The disabler object is perhaps Meson’s most peculiar object type. It does only
one thing: if a disabler object is used as an argument for any operation it will
cause the operation to not be run and instead return a disabler object. This
can be used to disable parts of the build easily without needing to write a lot of
branching code.

d = disabler()
x=1+d # x is disabler
e = executable(..., dependencies: d) # e is disabler



188

17 ELEMENTARY OBJECT REFERENCE

if d

something () # This branch is not taken.
else

something_else() # And neither is this.
endif

1741 found() — boolean

This is the only operation you can do with a disabler object that does not
short circuit a return value of disabler. This allows disablers to be used like
dependency objects.

Usage examples

d = disabler()
d.found() # Returns false.

17.5 1integer object
An integer object is an integer, that can be used in standard mathematical

operations using +, -, * and /. Attempting to divide by zero is illegal, and will
cause an unrecoverable error.

17.5.1 is_even() — boolean

This method returns true if the integer is even, that is, its remainder when
divided by 2 is zero.

Usage examples

1.is_even() # False
-1.is_even() # False
2.is_even() # True
-2.is_even() # True
0.is_even() # True

1752 is_odd() — boolean

This function is the opposite of is_even.



17.6 STRING

Usage examples

1.is_odd () # True
-1.is_odd() # True 1189
2.is_odd() # False
-2.is_odd() # False
0.is_odd () # False

17.5.3 More elaborate usage examples for integers

x=1+2 %3 # x has the value 7.
y = (1+2) * 3 # y has the value 9.
bad = 7/0 # Meson will exit with a hard error.

17.6 string object

A string contains zero or more UTF-8 encoded characters and is immutable. It
is not possible to express arbitrary binary data with Meson strings. The only
place where this may become an issue is that some operating systems permit
filenames that can not be expressed with Unicode. Files with these names can
not be expressed in Meson and thus they can not be used in build targets. All
string operations are case sensitive.

The simplest way to combine strings is the + operator:

food = 'ham' + 'burger' # Result is 'hamburger'.

You can also join strings as if they were file system path segments by using
the / operator. If the element on the right side of the division operator is an
absolute path, the element of the left side is discarded.

segl = 'subl'

seg2 = 'sub2/sub3'

abs = '/root'

segl / seg?2 # Result is 'subl/sub2/sub3'’
abs / segl # Result is '/root/subl'

abs / segl / seg2 # Result is '/root/subl/sub2/sub3'
segl / abs # Result is '/root'




190

17 ELEMENTARY OBJECT REFERENCE

17.6.1 contains(item) — boolean

Returns true if the string contains the given argument string as a substring.

Positional arguments

item is the string that should be searched for.

Usage examples

'team'.contains('I') # False, there is no "I" in "team"
'abcd'.contains('cd') # True

17.6.2 endswith(suffix) — boolean

Returns true if the string ends with the string given as the first argument.

Positional arguments

suffix The string suffix to be checked.

Usage examples

'hello'.endswith('hi') # False
'hello'.endswith('lo') # True

17.6.3 format(format_arguments) — string

This method is the most versatile way of producing new strings. It works by
going through the string looking for markers of type @number@ and replacing
those with the corresponding positional arguments. Indexing is zero-based. If
any entries point to entries that do not exist, such as trying to access the fourth
entry but only three arguments have been given, Meson will exit with a hard
error.

Positional arguments

format__arguments The arguments are the values to write to the result string.
They can be any object that has a natural string representation such as a
string, integer or boolean. Meson will take care of the conversion for you.
If you need full control over the conversion, then you need to construct the



17.6 STRING

substitution string manually and pass the result string as the argument to
this method.

Usage examples

template = '@0Q@ is @1Q.'
res = template.format('Thirteen', 13)
# res contains the text 'Thirteen is 13.'

17.6.4 join(strings_to_join) — string

The join method creates a string by joining the given argument strings. The
string being used to call the method is inserted between each string segment.
Positional arguments

strings_ to__join The argument list consists of the individual strings that will

be concatenated, in order, to the final string.

Usage examples

x ="', '.join('a', 'b', 'c', 'd")
# x has the value 'a, b, c, d'

y = ll‘join(lal, 'b', 'C')

# y has the value 'abc'

17.6.5 split(split_segment) — string array

This method is the opposite of join, it splits a string on every instance of the
given split segment.

Positional arguments

split__segment is an options separator string that should be used to do the
splitting. If no specific split character is specified, the string is split on
whitespace characters.

Usage examples

x = 'one two three'.split()
# x is ['one', 'two', 'three']

191



192

17 ELEMENTARY OBJECT REFERENCE

y = '127.0.0.1'.Split('.')
#y is ['127', '0', '0', '1']

17.6.6 startswith(prefix) — boolean

This method is conceptually the same as endswith except that it checks whether
the string ends with the given string.

Positional arguments

prefix The string value to be checked.

Usage examples

'prefixinator'.startswith('suffix') # False
'prefixinator'.startswith('prefix') # True

17.6.7 strip(strip_characters) — string

This method is used to clear unneeded characters from both ends of a given
string. The most common use case is to remove whitespace characters such as
linefeeds.

Positional arguments

strip__characters An optional string containing all the characters that should
be removed. If not specified the function will remove whitespace charac-
ters, that is, spaces, tabs, linefeeds and carriage returns.

Usage examples

s1 ' text \n'.stripQ # sl is 'text'
s2 = ' text '.strip('tex') # s2 is ' text ' (nothing is removed)
s3 = 'atexta'.strip('a') # s3 is 'text'
s4 = 'atextb'.strip('a') # s4 is 'textb'
sb 'atextb'.strip('ab') # sb is 'text'

17.6.8 to_int() — integer

Converts the string to an integer in base 10. If the string does not represent a
number, the result will be a hard error.



17.6 STRING

Usage examples

one = '1'.to_int() 193
minus_one = '-1'.to_int()
hard_error = 'text'.to_int() # Terminates the program.

17.6.9 to_lower() — string

This method, unsurprisingly, converts a string to all lower case.

Usage examples

11 'o0o'.to_lower() # 11 is 'ooo'
12 = '000'.to_lower() # 12 is '00o' (middle character is zero)

17.6.10 to_upper() — string

This method converts the string to all upper case.

Usage examples

11 'abc'.to_upper() # 11 is 'ABC'
12 = 'a_a'.to_upper() # 12 is 'A_A'

17.6.11 underscorify() — string

This helper method can be used to convert strings to a format that are usable as
variables in most programming languages, especially those of the C family. This
is done by replacing all characters that are neither latin characters nor numbers
with the underscore (_) character.

Usage examples

ul = 'parted-name'.underscorify() # ul is 'parted_name'
u2 = 'directory/path'.underscorify() # u2 is 'directory_path'
u3 = 'alb"crd%f&'.underscorify() # u3 is 'a_b_c_d_f_'




194

17 ELEMENTARY OBJECT REFERENCE

17.6.12 version_compare(comparison_string) — boolean

The simplest way to compare two strings is to go through both strings one
character at a time and compare each pair in isolation. This is the typical way
of sorting strings and can be used to easily detect that, for example, the string
’abe’ is less than (meaning should be sorted before) the string ’def’.

This comparison does not work when dealing with version numbers. Sup-
pose we have two version strings >10’ and ’3’. A simple comparison starts by
comparing the first elements of each string. It would note that >1’ is less than
’3? and would sort >10° before ’3’. This is semantically incorrect, since the
number 3 is less than 10 and should order before it.

This method provides a way to compare version strings in a “natural order”,
which treats digit sequences in the string as numbers rather than individual
characters. More specifically this method compares version strings using the
semantic versioning schema of period separated numbers. The most common
format is major.minor.bugfix-extra, for example 1.0.0. There can be more
or fewer number elements, but three is the most common number. The -extra
part can be any string, such as ’-rcl1’ for release candidate one. There are no
limitations on what the extra part can contain, so it is recommended that you
set up your version number checks so that its contents do not affect the results.

Positional arguments

comparison__string A string that defines the version check. It consists of two
parts. The first one is the comparison specification, and it can be any of
<, <=, > >= == or !=. This should be immediately followed by the version
number.

Usage examples

v="'12.3"'

v.version_compare('<2.0.0') # true
v.version_compare('<=1.2.3') # true
v.version_compare('<1.10.3') # false
v.version_compare('!=3") # true
v.version_compare('>1.2") # true




Chapter 18
Domain specific object
reference

This chapter documents all objects that define parts of the build, such as ex-
ecutables and other build targets. This includes objects used for constructing
custom build steps.

18.1 build machine object

The build machine object provides information about the computer system being
used to compile the current program. See Chapter 12 for an explanation about
the different machines and their usage.

The build machine object is always set and can not be changed. Trying to
assign a value to the build_machine variable is a hard error.

18.1.1 cpu_family() — string

Some computer processors have many different makes and models that are com-
patible, but are known by different names. The most well known example of
this are 32 bit Intel x86 processors. Over the 304 year history the processors
have had a plethora of names, both release and code names all of which are used
somewhere. Sometimes different operating systems call the same processor with
different names. Thus a x86 processor might be know as 286, i586, 'pentium’ or
some other value

For most configuration purposes the exact make and model of the processor
does not matter, only the “family”, that is, a common name for all these proces-
sor types. This function provides this name, so that all build scripts don’t have
to reinvent the logic matching processor names to a generic family name.



196

18 DOMAIN SPECIFIC OBJECT REFERENCE

The most common return types are x86 and x86_64 for 32 and 64 bit Intel
and AMD processors and arm and aarch64 for 32 and 64 bit ARM processors.
New processor families are added to Meson all the time. A full and up to date
list of supported CPU families can be found on the Meson project’s home page.

Usage examples

# on a 64 bit Intel or AMD machine
build_machine.cpu_family () # Result is 'x86_64'.

18.1.2 cpu() — string

Returns a string describing the processor on the build machine as accurately as
possible. There are no set form for the string. Different operating systems may
return a different value when run on the same machine.

Usage examples

# On a 32 bit ARM machine

build_machine.cpu()

# Result may be 'arm', 'armb', 'arm7hle' or some other
# value completely.

18.1.3 system() — string

Returns a string describing the build machine’s operating system. This value is
derived mostly from the operating system kernel. For example Apple has devices
that run both macOS and iOS, but both of them report the system as darwin.
On the other hand the Cygwin environment runs directly on top of Windows,
but this value is cygwin. This may seem a bit strange but it is done to maintain
consistency with other tools that have a similar naming scheme.

The most common system names are linux, windows for all versions of Win-
dows, and darwin which is used both for macOS as well as i0S. Support for new
systems is added to Meson fairly regularly. A complete and up-to-date list of
supported systems can be found on the Meson project’s home page.

Usage examples

# On any version of Windows.
build_machine.system() # Result is 'windows'.




18.2 BUILD TARGET

18.1.4 endian() — string

Returns the processor’s endianness, which is either big or little.
197

Usage examples

build_machine.endian() # 'little' on most modern processors

18.2 build_target object

A build target object represents the output of all targets that compile source
code to binary targets. In practice this means all targets except custom_target
and run_target.

18.2.1 extract_all_objects() — object

Returns an opaque object that holds all the object files that get built in this
target. These can be passed to other build targets using their object keyword
argument. which will cause the object files to be linked in the other target
directly. Note that this should only be used for special cases. Most of the time
you should build a library and link that to the target.

Keyword arguments

recursive specifies whether the result should also contain those object files that
were passed in to the target rather than just the ones that are built as part
of the target. Defaults to false.

18.2.2 extract_objects(sources, ...) — object

Like extract_all_objects, except that it only extracts the objects files of the
sources given as arguments.

Positional arguments

sources are one or more input sources that can be either strings or file objects.

Usage examples

shlib = shared_library('name',
'sourcel.c',



198

18 DOMAIN SPECIFIC OBJECT REFERENCE

'source2.c')
single_obj = shlib.extract_objects('source2.c')

18.2.3 full_path() — string

Returns the absolute path to the output file. Note that usually you don’t need
this, using the object directly in other targets makes Meson expand the path
automatically and set up proper dependencies between the two targets.

18.2.4 name() — string

Returns the name of the target as a string.

18.2.5 private_dir_include() — include directory object

Returns an include directory object that points to the target’s private directory.
This might be needed in cases where you generate headers in the private dir,
but you also need the headers in other compilations.

18.3 compiler object

A compiler object represents a compiler for a single language. Compiler objects
can be obtained from the meson object’s get_compiler method. The two most
common operations are getting the compiler’s name for configuration purposes
and running compilation checks which are available as methods. Not all lan-
guages support all the checks. These checks are most commonly needed with
the C family of languages.

All compile test checks accept the same set of keyword arguments. Rather
than listing them in every method description, they are listed collectively in
Section 18.3.28.

18.3.1 alignment(type, ...) — integer

Returns the alignment of the specified type.

Positional arguments

type the type to be checked.



18.3 COMPILER

Usage examples

# Ints usually have an alignment of 4. 1
a = cc.alignment('int') 99

# System structs can be inspected too.
a = cc.alignment('struct stat',
prefix: '#include<sys/stat.h>')

18.3.2 command_array() — string array

Returns an array of strings specifying the compiler command.

Usage examples

# A typical answer might be ['ccache', 'gcc']
carr = cc.command_array ()

18.3.3 check _header(name, ...) — boolean

Returns true if the specified header exists and is usable. This is a slower but
more reliable version of has_header. Most projects should use has_header
instead of this one, which is only needed if you need to verify that the header
can be included and compiled without errors.

Usage examples

dep = dependency('frobnitz')
cc.check_header('frobnitz.h', dependencies: dep)

18.3.4 compiles(snippet, ...) — boolean

Returns either true or false depending on whether the specified code snippet
compiles successfully.

Positional arguments

snippet is the source code to be tested. This argument can either be a string
holding the code or a file object.



18 DOMAIN SPECIFIC OBJECT REFERENCE

Usage examples

200 # This will return false because the definition is missing.
cc.compiles('struct stat tmp;')

# This will return true.
cc.compiles('''#include<sys/stat>
struct stat tmp;''')

18.3.5 compute_int(expression, ...) — integer

Returns the value of the given expression as an integer.

Positional arguments

expression a single expression to evaluate.

Keyword arguments

guess is a best guess for the result. This is only used during cross compila-
tion. Since cross compiled executables can not necessarily be run, Meson
evaluates the results with an iterative search algorithm. Since cross com-
piled binaries can generally not be executed, the search is implemented by
guessing a value, constructing a program that fails to compile if the value
is not the result of the given computation and succeeds if it is. The system
will try different values until it finds the correct one.

high specifies the upper bound for the iterative search result. If the answer
is larger than this value, this function will return incorrect results. The
default value is 1024. The larger the search space is, the slower the test is,
so the boundary should be kept as close to the assumed value as possible.

low specifies the lower bound for the value. The default value is -1024.

Usage examples

# Result is 7
cc.compute_int ('l + 2%3')

18.3.6 find_library(name, ...) — dependency object

Finds the given library on the system. Returns a dependency object that can
be used in build targets. The result must be used in dependencies keyword



18.3 COMPILER

argument, not 1link_with as the latter is only for libraries that have been built
as part of the project.

Positional arguments

name the name of the library. The name should be specified without the 1ib
prefix. It will be automatically added when required by the platform. That
is, the value should be something rather than libsomething.

Keyword arguments

dirs is an array of strings with additional directories where the library should
be looked for.

disabler is a boolean defaulting to false. If set to true causes a disabler object
to be returned for failed lookups instead of a dependency object.

has_ headers is a list of header file names. In order for the library lookup
to be successful, all the given headers must all be found. Internally calls
has_header on the inputs one by one.

required is a boolean defaulting to true causing failed library lookups to exit
with a hard error. If set to false a non-found dependency object will
be returned instead. Like all required keywords, this one also accepts a
feature object.

In addition all keyword argument names that begin with header_ will have
this prefix removed and the result passed as a keyword argument to the corre-
sponding has_header call.

Usage examples

# The portable way to find the C standard math library.
libm = cc.find_library('m', required: false)

# Look up a library and its header
1 _dep = cc.find_library('frobnicator',
has_headers: 'frobnicate.h')

18.3.7 get_id() — string

Returns the name of the compiler as a string. Typical values include gcc, clang
and msvc.

201



202

18 DOMAIN SPECIFIC OBJECT REFERENCE

18.3.8 get_linker_id() — string

Returns the name of the linker that the compiler will use.

18.3.9 first_supported_argument (arguments)
— string or empty array

Given the array of command line arguments, returns the first one for which the
has_argument returns true. If none of the arguments are supported returns an
empty array.

18.3.10 first_supported_link_ argument (arguments)
— string or empty array

Given the array of command line arguments, returns the first one to which the
has_link_argument returns true. If none of the arguments is supported returns
an empty array.

18.3.11 has_argument (argument) — boolean

Returns true if the compiler accepts the given command line argument and
false otherwise. The argument is considered accepted if the compiler can suc-
cessfully compile a test program while using the given argument. This test
may be unreliable on some compilers, as they accept unknown command line
arguments without an error. Meson tries its best to detect when a flag is not
supported, but unfortunately this can not be made 100% reliable.

Usage examples

# Would return true on a gcc-style compiler.
cc.has_argument ('-02')

# Would return true on a msvc-style compiler.
cc.has_argument ('/W3')

18.3.12 get_supported_function_attributes(attributes)
— string array

Returns an array of strings containing all attributes given as the argument that
the compiler supports. Calls has_function_attribute internally.



18.3 COMPILER

18.3.13 has function(name, ...) — boolean

Returns true if the given function exists.

203

Usage examples

# Result is true.
cc.has_function('fopen', prefix: '#include<stdio.h>')

18.3.14 has_function_attribute(name) — string

Returns true if the compiler supports a GNU style function attribute with the
given name.

18.3.15 has_header(name, ...) — boolean

Returns true if the specified header exists. This is only a preprocessor existance
check. If you want to test that the header is usable, use the check_header
method instead.

Usage examples

# Almost always true.
cc.has_header('stdio.h')

18.3.16 has_header_symbol(headername, symbolname...)
— boolean

Returns true if the specified header defines the symbol name given. More specif-
ically it tests if the symbol can be found after including the header. The symbol
may be defined in some other way (such as being a builtin), therefore this test
may return true even if strictly speaking the symbol does not come from the
header.

Positional arguments

headername is the name of the header to check.

symbolname is a string holding the symbol to check. What constitutes a
“symbol” is language specific but usually contains things such as functions,
variables, preprocessor symbols and types.



18 DOMAIN SPECIFIC OBJECT REFERENCE

Keyword arguments

required is a boolean defaulting to false. If set to true and the symbol is not
204 found, it will cause a hard error.

Usage examples

# A common function for getting file properties.
cc.has_header_symbol('unistd.h', 'fstat')

# This will cause a hard error.
cc.has_header_symbol('stdio.h', 'nonexisting', required: true)

18.3.17 has_link_argument(argument) — boolean

Same as has_argument but checks for linker arguments rather than compiler
arguments. The way the linker is invoked depends on the toolchain. Unix-style
toolchains invoke the linker via the compiler, and require all linker arguments
to be prefixed with -W1,. For Visual Studio Meson will automatically prepend
the given argument with a /LINK argument.

Usage examples

# Would return true on a gcc-style compiler.
cc.has_link_argument('-Wl,-01')

# Would return true on a msvc-style compiler.
cc.has_argument ('/DEBUG')

18.3.18 has_member(typename, membername, ...) — boolean

Returns true if the given type (usually a struct) has a member with the given
name.

Usage examples

# Stat is a struct holding information about

# file system entities and st_uid refers to the
# user id of the file's owner.
cc.has_member('struct stat', 'st_uid',



18.3 COMPILER

prefix: '#include<sys/stat.h>')

# This returns false.
cc.has_member ('struct stat', 'nonexisting',
prefix: '#include<sys/stat.h>')

18.3.19 has_members(typename, membernames, ...) — boolean
Same as has_member but takes multiple member names. Returns true only if
the type has all the listed members.

18.3.20 has_multi_arguments(args, ...) — boolean

Same as has_argument but takes many command line arguments and uses all
of them in the test.

18.3.21 has_multi_link arguments(args, ...) — boolean
Same as has_link_argument but takes many command line arguments and uses
all of them in the test.

18.3.22 has_type(typename, ...) — boolean

Returns true if the argument defines a type.

18.3.23 1links(code, ...) — boolean

Returns true if the given code compiles and links successfully.

Positional arguments

code is the program to be tested. Can either be a string holding the code or a
file object.

Usage examples

# Returns false on systems that require specific
# linker arguments to use math functionms.
snippet = '''#include<math.h>
int main(int argc, char **xargv) {

return sin(argc-1);

}Ill

205



200

18 DOMAIN SPECIFIC OBJECT REFERENCE

cc.links(snippet)

18.3.24 run(code, ...) — run result object

Tries to compile and run the given program. The return value can be used to
check the outcome, including whether the compilation failed so the test could
not be run.

Positional arguments

code is the code to be tested. Can be either a string holding the code or a file
object.

Usage examples

# "code" is a simple application that always returns O.

rc = cc.run(code)

rc.compiled() # Returns true.

rc.returncode() # Returns O.

rc.stdout () # Returns empty string.
18.3.25 sizeof(typename, ...) — integer

Returns the size of the specified type in multiples of size of char. This equals
to bytes on all but the most esoteric of compiler toolchains.
If the type is unknown, the return value is -1.

Positional arguments

typename is the name of the type, such as int, double or struct stat.

Usage examples

# Almost always 4.
cc.sizeof ('int')

18.3.26 symbols_have_underscore_prefix() — boolean

Returns true if the system’s C function name mangling scheme adds an under-
score character before the symbol name. If you ever find yourself needing to



18.4 CONFIGURATION DATA

use this function, pat yourself on the back, for you are a member of a highly
exclusive group of people.

18.3.27 version() — string

Returns the compiler’s version number as a string.

18.3.28 Compilation check common arguments
Keyword arguments

args are command line arguments that are passed to compilation checks.

dependencies dependency objects to use. These must be external dependen-
cies, using an internal dependency is a hard error.

include__ directories list additional include directories to add to the header
search path.

name is a freeform string that describes the current test and is printed when
the check is run. Supported by compiles, links and run methods.

no_ builtin__args when true, tells Meson not to add any builtin configuration
options. Defaults to false.

prefix is a string that will be added to the beginning of test compilations.
Typically it is used to specify #includes or type definitions.

18.4 configuration data object

A configuration data object is similar to a dictionary in that it stores a list of
key and value pairs. The keys can only be strings and values can only be strings
or integers. The main differences between dictionaries and configuration data
objects are that configuration data object contains helper methods for common
functionality and that configuration data objects are mutable.

Once a configuration data object is used as an argument to configure_file,
it becomes immutable. Attempting to change its state will lead to program
termination. This guards against the common problem where some values are
accidentally set after file generation, not before it and thus would be lost.

18.4.1 get(varname, default_value) — string

Get back the value set for the given key.

Positional arguments

varname is the name of the value to look up.



18 DOMAIN SPECIFIC OBJECT REFERENCE

default_ value An optional value specifying the value to return if the object
does not contain the specified key. If this is not set, then querying a missing
value from the object is a hard error.

208

Usage examples

c = configuration_data()

c.set('key', 'value')

c.get('key') # Result is 'value'
c.get('nonexisting') # Hard error

c

.get('nonexisting', 'fallback') # Result is 'fallback'.

18.4.2 get_unquoted(varname, default_value) — string

Get back the unquoted value of the given key.

Positional arguments

varname A string with the key value to look up.

default__value An optional value specifying the value to return if the object
does not contain the specified key. If this is not set, then querying a missing
value from the object is a hard error.

Usage examples

c = configuration_data()

c.set_quoted('key', 'value')

c.get('key") # Result is '"value
c.get_unquoted('key"') # Result is 'value'.

18.4.3 has(varname) — boolean

Returns true if the given key has been set, false otherwise.

Positional arguments

varname A string with the key value to look up.

Usage examples



18.4 CONFIGURATION DATA

¢ = configuration_data()

c.set('key', 'value')

c.has('key") # Result is true
c.has('nonexisting') # Result is false

18.4.4 merge_from(other) — none

Takes all entries from the given argument and copies them to the current object.
If a key is defined in both, the value in other is used and the current one is
discarded.

Positional arguments

other is the configuration data object to copy entries from.

Usage examples

cl = configuration_data()
c2 = configuration_data()
cl.set('keyl', 'valuel')
cl.set('key2', 'old_value')
c2.set('key2', 'new_value')
c2.set('key3', 'value3')
cl.merge_from(c2)
cl.get('keyl') # Result is 'valuel'
cl.get('key2') # Result is 'new_value'
cl.get('key3') # Result is 'value3'
18.4.5 set(varname, value) — none
Sets the entry varname to the given value.

Positional arguments

varname A string containing the key to set.
value The value to set.

Usage examples

209



210

18 DOMAIN SPECIFIC OBJECT REFERENCE

¢ = configuration_data()
c.set('key', 'value') # Entry 'key' is now set to 'value'
c.set('key', 'value2') # Entry 'key' is now set to 'value2'

18.4.6 set10(varname, value) — none

Sets the entry varname either to 1 or 0 depending on whether the given value
is true or false. This method is convenient for defining e.g. C preprocessor
definitions, which use numbers instead of boolean types.

Positional arguments
varname A string containing the key to set.

value The value to set, must be a boolean.

Usage examples

¢ = configuration_data()
c.setl10('keyl', true) # Entry "keyl" is now set to 1
c.setl0('key2', false) # Entry "key2" is now set to O

18.4.7 set_quoted(varname, value) — none

Sets the entry varname to the given string but also quotes it with double quotes
according to the C language quoting rules.

Positional arguments
varname A string containing the key to set.

value The value to set, must be a string.

Usage examples

¢ = configuration_data()
c.set_quoted('key', 'value') # Entry "key" is set to "value"
c.set('key', '"false"') # Identical to the previous line




18.5 CUSTOM__TARGET

18.5 custom_target object

A custom target object is the return value of the custom_target function. It is
typically used to build further targets, especially when generating source code.
Another use case of custom targets is to generate runnable scripts. Thus a cus-
tom target can be used as if it were an executable target. It is the responsibility
of the user to ensure that the output is runnable when using a custom target as
an executable. Meson can not detect this reliably, so it just assumes that the
result can be executed directly.

Custom target objects can be indexed with the [] operator to access the
individual output files.

18.5.1 full_path() — string

Returns a string with an absolute path pointing to the output file. Note that if
you want to use the object as an argument to a different command, you should
use the object directly in the argument array. Meson will automatically expand
the path and set up a dependency between the two targets. This can also be

211

called on individual outputs accessed via indexing, like this: some_target [0].full_path().

18.5.2 to_list() — array

Returns an array of opaque objects referring to the individual output files of this
target. Typically they are used as inputs to other targets and commands.

18.6 dependency object

A dependency object encapsulates a build dependency, typically a library with
its corresponding headers. It can be either an external dependency as found by
the dependency function or an internal one created with declare_dependency.

A dependency consists of four things: compiler flags, linker flags, libraries to
link against, include directories and sources. Source files are compiled as part of
the target as if they were listed in the target’s sources. If any of the sources are
headers generated during build, Meson will ensure that they are all generated
before any source code using this target is compiled.

18.6.1 as_system() — dependency object

Returns a new dependency object that is otherwise identical to the current
object, except that it is marked as a system dependency.



212

18 DOMAIN SPECIFIC OBJECT REFERENCE

18.6.2 found() — boolean

Returns true if the dependency was found. Internal dependencies are always
considered found.

18.6.3 get_variable(...) — string

Gets the value of the given variable from the dependency. These may contain
additional information needed to configure builds, such as directory names for in-
stalling plugins and data files. Typically you only need to define default_value,
but sometimes the variables have different names with different backends. In
these cases you can override the name to use with the keyword arguments.

Keyword arguments

cmake is the variable name to use with a CMake dependency.

default_ value is the default variable name to use if a tool-specific one has not
been specified.

configtool is the variable name to use for dependencies that provide their own
configuration tools rather than using something standard like Pkg-config.
Some tools do not provide for this, in which case trying to query the value
is a hard error.

pkgconfig is the variable name to use with a Pkg-config depencency.

pkgconfig_ define can be used to override pkg-config variables during lookup.
It behaves identically to the define_variable keyword argument in method
get_pkgconfig variable.

internal is the variable name to use for internal dependencies, that is, those
created with declare_dependency.

18.6.4 1is_system() — boolean
Returns true if the dependency was looked up as a system dependency. See
Section 19.16 for details.

18.6.5 name() — string

Returns the name of the dependency or internal for internal dependencies.

18.6.6 get_pkgconfig variable(name, ...) — string

Obtains the given variable from the dependency’s pkg-config definition. Errors
out if the dependency has not been found via pkg-config. Note that this method
is deprecated and you’d probably want to use get_variable instead.



18.6 DEPENDENCY

Positional arguments

name is the name of the variable to look up. 213

Keyword arguments

default is a value that will be returned if the variable is not defined.
define_ variable can be used to override variables defined in the pkg-config
file. This argument is an string array with consecutive key—value pairs.

Usage examples

dep.get_pkgconfig variable('prefix') # Returns '/usr'
dep.get_pkgconfig_variable('prefix',
define_variable: ['prefix', '/tmp'l) # Returns '/tmp'

18.6.7 type_name() — string

Returns the name of the mechanism (such as pkgconfig) used to look up this
dependency or internal for internal dependencies.

18.6.8 version() — string

Returns the version of the dependency as a string or unknown if it can not be
determined.

18.6.9 partial_dependency(...) — dependency object

Creates a new dependency object that consists of a subsection of this depen-
dency’s information. Used for special cases, such as when building extension
modules for programming languages where you need the headers but you must
not link against the library.

Keyword arguments

compile__args is a boolean specifying whether to add compile args to the re-
sult. Defaults to false.

includes is a boolean specifying whether to add include directories to the result.
Defaults to false.

link__args is a boolean specifying whether to add link args to the result. De-
faults to false.



214

18 DOMAIN SPECIFIC OBJECT REFERENCE

Table 18.1: Results of setting the environment variable E with an environment
object on different operating systems.

Method call Old value ‘ Unix ‘ Windows

.set(CE’, ’1°) any 1 1
.set(CE?, ’1°, ’2?) any 1:2 1;2
.set(CE’, 17, 2

separator: ’_’) any 1.2 1.2
.append(’E’, ’17) 0 0:1 0;1
.append (’E’, ’17) none 1 1
.prepend(’E’, ’1°) 0 1:0 1;0
.append(’E’>, ’1°, ’2°) | O 0:1:2 ] 0;1;2
.append (’E’, 1,

separator: ’_’) 0 0_1 0_1

links is a boolean specifying whether to add linked libraries to the result. De-
faults to false.

sources is a boolean specifying whether to add sources to the result. Defaults
to false.

18.7 environment object

Environment object is used to store information on how environment variables
should be set when executing external commands and tests. Note that this object
is mutable, you can change its state unlike almost every other Meson object.
The way variables set with these commands interact with existing variables is
outlined in Table 18.1.

18.7.1 append(varname, values, .) — none

Positional arguments

varname is the name of the environment variable to change.
values are one or more strings specifying the values to append.

Keyword arguments

separator is the character used to separate the individual values. If not speci-
fied defaults to ; on Windows and : on all other systems.



18.8 EXTERNAL LIBRARY

18.7.2 prepend(varname, values, ...) — none

This method is identical to append with the exception that it adds the values
at the beginning of the given variable rather than at the end.

18.7.3 set(varname, values, ...) — none

This method is identical to append except that it discards any old value that
the variable may have had.

18.8 external library object

An external library is identical to an external dependency object except that its
return value for type_name method call is library.

18.9 external program object

An external program is the return value of find_program and represents a
command that can be run. Note that the command may contain multiple parts
and be different on different platforms. A script that is run with an interpreter
might be [’python’, ’myscript.py’] on Windows and [’myscript.py’] on
Unix platforms.

18.9.1 found() — boolean

Returns true if the program has been found. Attempting to execute a not found
executable object is a hard error.

18.9.2 path() — string

Returns an absolute path to the first part of the command. That is, if the
command is a string, returns a string pointing to the interpreter binary. Don’t
use this when passing the object to a different command, pass the object itself
directly instead.

18.10 generator object

A generator object is the return value of the generator function. It defines a
rule of running the same operation on a bunch of input files to produce one or
more output files. Generator outputs do not live on their own, they must be

215



216

18 DOMAIN SPECIFIC OBJECT REFERENCE

passed to a build target to be ultimately created. This is because the rule writes
the output files to the target’s private directory.

18.10.1 process(files, ...) — output files

Tells Meson to process the given files with the current generator’s rule.

Positional arguments

files are the input files to be processed, each one separately.

Keyword arguments

extra__args is an array of strings. If the generator has an @EXTRA_ARGS@ tem-
plate string in its argument list, that will be replaced with the specified
arguments.

preserve__path_ from tells Meson to preserve some path segments from the
input filename. By default the file is written to the output directory,
that is, if the given file name is subdir/file.in, the output will be
private_dir/file.out. If the value is meson.current_source_dir() in-
stead, the output file name will change to private_dir/subdir/file.out.

Usage examples

g = generator(...)

# Convert files.
out_files = g.process('filel.in', 'file2.in')

# Use the result.
executable('prog', 'prog.c', out_files)

18.11 host_machine object

This object is identical to the build_machine object, except that it represents
the host machine. That is, the machine where the compiled program will be run
on. The host machine only differs from the build machine when cross compiling.
When compiling natively, the build and host machine objects are identical.



18.12 MESON

18.12 meson object

The meson object provides functionality to query state of the system and current
build setup. It can also be used to define scripts to be run during different phases
of the build.

18.12.1 add_dist_script(executable, args) — none

Adds a command to be run during when creating the dist target, that is, a
release tarball. This method can be called multiple times and the scripts will
be run in the order specified. This method can not be called from a subproject,
only the master project. Calling it from a subproject is a hard error.

Positional arguments

executable is the script or command to execute. It may be a script, a file
object or the output of find_program. Note that Meson will invoke the
script from the staging directory after the first phase of dist has successfully
finished.

args one or more strings that will be passed as arguments to the command.

Usage examples

ds = find_program('dist_postprocessor.py"')
meson.add_dist_script(ds)

18.12.2 add_install_script(script, args) — none

This method is identical to add_dist_script except that it is run after install
rather than dist. When the script is run, Meson sets environment variables as
specified in Table 9.2 on page 106.

18.12.3 add_postconf_script(script, args) — none
This method is identical to add_dist_script except that it is run after the

configuration phase of Meson has successfully finished.

18.12.4 backend() — string

Returns a string specifying the backend currently in use. Can be one of ninja,
vs2010, vs2015, vs2017 or xcode.

217



218

18 DOMAIN SPECIFIC OBJECT REFERENCE

18.12.5 Dbuild_root() — string

Returns a string with an absolute path to the root of the current build tree.
When called from a subproject will still return the top of the build tree. This
method is rarely needed, most use cases are better served by current_build_dir
instead.

Usage examples

# Returns a string like /home/username/myproject/build
bd = meson.build_root ()

18.12.6 can_run_host_binaries() — boolean

Returns true if the binaries generated for the host can be run directly. This
returns true when not doing cross compilation, when an exe wrapper has been
defined and when the executables are directly runnable for other reasons. As an
example the 64 bit version of Windows can run 32 bit Windows binaries natively.

18.12.7 current_build_dir() — string

Returns a string with an absolute path to the current build directory.

Usage examples

# Returns a string like /home/username/myproject/build/src
sd = meson.current_build_dir()

18.12.8 current_source_dir() — string

Returns a string with an absolute path to the current source directory.

Usage examples

# Returns a string like /home/username/myproject/src
sd = meson.current_source_dir()

18.12.9 get_compiler(language, ...) — compiler object

Returns a compiler object for the given language. Typically this is done to run
configuration tests such as checking for existing headers.



18.12 MESON

Positional arguments

language the language to request.
219

Keyword arguments

native is a boolean specifying whether Meson should return the native or the
cross compiler. If not defined the system will return the cross compiler
when cross compiling and the native compiler otherwise.

Usage examples

# Get the C compiler
cc = meson.get_compiler('c')

# Get the native compiler even when cross compiling.
cc = meson.get_compiler('c', native: true)

18.12.10 get_cross_property(name, fallback) — object

Gets the value of a property as defined in the cross file. Return value can be
anything defined in the cross file, typically a string, integer or a string array.
Note that in most cases you’d want to use get_external_property instead as
it works transparently with both cross and native files.

Positional arguments

name is a string holding the property name.

fallback an optional value to return if the specified property is not defined in
the cross file or when not cross compiling. Requesting a missing cross
property without a fallback is a hard error.

Usage examples

Cross file has this:

[properties]

#
#
#
# key = 'value'

+*

Returns 'value'
v = meson.get_cross_property('key')



220

18 DOMAIN SPECIFIC OBJECT REFERENCE

# Hard error
vV = meson.get_cross_property('nonexisting')

# Returns 'fallback'
v = meson.get_cross_property('nonexisting', 'fallback')

18.12.11 get_external_property(name, fallback, ...) —
object

Behaves like get_cross_property but works transparently with both native
and cross files.
Positional arguments

name is a string holding the property name.
fallback an optional value to return if the specified property is not defined.
Requesting a missing property without a fallback is a hard error.

Keyword arguments

native is a boolean specifying whether to get the information from the native
file or the cross file. If not specified Meson will look up the property
from the cross file when cross compiling and the native file when not cross
compiling.

18.12.12 has_exe_wrapper() — boolean

This method is deprecates, use can_run_host_binaries instead.

18.12.13 install_dependency manifest(file_name) — none

Installs a dependency manifest to the given file name. This manifest contains all
subprojects, their versions and licenses in a machine readable form.

18.12.14 is_cross_build() — boolean

Returns true when cross compiling and false otherwise.x

18.12.15 is_unity() — boolean

Returns true if doing a unity build and false otherwise. This is different
from merely getting the value of the unity option. That option tells the global



18.12 MESON

value of the option, this method tells whether unity build is being used in this
subproject.

18.12.16 override_dependency_program(name, dependency) —
none

Overrides the result of subsequent dependency lookups to return the given de-
pendency object. After this call all lookups with the given name either return
that object or fail due to e.g. unsatisfiable version requirements. Trying to over-
ride a dependency that has already been successfully found is a hard error.

Positional arguments

name is a string specifying the dependency name, such as glib-2.0.
dependency is the dependency object to return, which can be the return value
of dependency or declare_dependency.

18.12.17 override_find_program(name, executable) — none

Overrides the result of subsequent find_program calls so that looking up a pro-
gram with the given name returns the executable given as the second argument.
Trying to override a program name that has already been successfully looked
during this Meson run is a hard error. This is done to ensure that only one
executable is used in all projects.

This method is typically used to override code generators and the like in
subprojects, so that all projects using them get the same specified programs.

Positional arguments

name is a string specifying the name to override.

executable is the program object that should be returned. Can be the result
of find_program, configure_file or executable. If using an executable
then there is an extra limitation that the overridden program may not be
executed during configure time.

Usage examples

conv = find_program('custom_converter')
meson.override_find_program('converter', conv)

# Later in a different file

221



222

18 DOMAIN SPECIFIC OBJECT REFERENCE

# conv will be custom_converter, not plain converter
conv = find_program('converter')

18.12.18 project_licenses() — string array

Returns a string array holding the current project’s license(s) as set in the
project function.

18.12.19 project_name() — string

Returns a string holding the current project’s name as set in the project func-
tion.

18.12.20 project_version() — string

Returns a string holding the current project’s version as set in the project
function.

18.12.21 source_root() — string

Returns a string with an absolute path to the root of the current source tree.
When called from a subproject will still return the top of the master project. This
method is rarely needed, most uses are better served by current_source_dir
instead.

18.12.22 version() — string

Returns a string holding the version of Meson currently in use.

Usage examples

# Returns a string like '0.55.0'
sd = meson.version()

18.13 python_installation object

This object is created by the python module as documented in Section 20.8.
The installation object behaves like an external program. It can be invoked with
run_command or used to generate custom targets. It has additional methods for
creating extensions.



18.13 PYTHON_ INSTALLATION

18.13.1 extension module(name, sources, ...)
— module object

This method builds a Python extension module according to the naming conven-
tions of the current platform. This method is identical to the shared_module
function except that you can’t define the file name’s prefix or suffix.

The method accepts one additional keyword argument, subdir, which speci-
fies the installation directory relative to the system’s extension module directory.
Defining both this keyword argument and install_dir is a hard error.

18.13.2 dependency() — dependency object

Returns a dependency object needed to build extension modules against the
given installation.

18.13.3 install sources(files, ...) — none

Installs Python source files. Positional arguments are the same as they are for
install_data.

Keyword arguments

pure specifies whether compiled modules should be installed in the same direc-
tory as their Python source code. The default is true, keeping the two file
types in separate directories.

subdir has the same meaning as in the extension_module method.

In addition this method accepts all the same keyword arguments as the func-
tion install_data.
18.13.4 get_install _dir(...) — string
Returns the directory where Python source files get installed. This method
accepts the same keyword arguments as install_sources.
18.13.5 1language_version() — string

Returns the current installation’s Python version in the format major.minor.

18.13.6 get_path(name, fallback) — string

Gets the given path. This is equivalent to calling sysconfig.get_path in
Python.

223



224

18 DOMAIN SPECIFIC OBJECT REFERENCE

Positional arguments

name is a path name to look up. The list of existing path names depend on
the Python installation, but can include values such as stdlib and data.

fallback is an optional fallback value that is returned if the path name was not
found. If a name is not found and fallback is not set, Meson will exit with
a hard error.

18.13.7 has_path(pathname) — boolean

Returns true if the Python installation has the given path.

18.13.8 get_variable() — string

This method is identical to get_path except that it looks up variables rather
than paths in the sysconfig module.

18.13.9 has_variable() — boolean

This method is identical to has_path except that it looks up variables rather
than paths in the sysconfig module.

18.14 run result object

Run result stores information on an external process executed during configure
time. These include run_command and checks invoked via the compiler object.

18.14.1 compiled() — boolean

This method is only available on objects created by compiler checks. Returns
true if the code built successfully. If false the remaining methods return
unspecified data.

18.14.2 returncode() — integer

Gets the return code of the program. The established standard is that the value
0 means success and all other values mean failure.

18.14.3 stderr() — string

Returns all text the program wrote to standard error.



18.15 SOURCE__CONFIGURATION

18.14.4 stdout() — string

Returns all text the program wrote to standard out. 295

18.15 source_configuration object

This object contains the outcome of evaluating a source set. It holds sources
and dependencies that can be used to build targets.

18.15.1 sources() — source list

Returns all sources in the current object.

18.15.2 dependencies() — dependency list

Returns all dependencies in the current object.

18.16 source_set object

A source_set object is used to convert long and convoluted if/else branches
into simpler form. A typical use case is implementing a function with an existing
library or, if it is not available, with fallback functionality (which is usually
less performant). These objects are created with the source_set module as
described in Section 20.12.

This object has two distinct phases. First you define the different sources and
conditions for their usage. Then you pass in a configuration object to obtain the
final set of sources and dependencies to use in a target. This object is mutable in
the first phase, but becomes immutable once you pass in a configuration object.
Trying to add new sources after that is a hard error.

18.16.1 add(sources_and deps, ...) — none

This method adds new sources and dependencies to the set, either condition-
ally or unconditionally. This method can thus be called only with positional
arguments or only with keyword arguments. Having both is a hard error.

Positional arguments

sources__and__deps consists of source and dependency objects. These are
added unconditionally to this set’s list of sources and dependencies.



2206

18 DOMAIN SPECIFIC OBJECT REFERENCE

Keyword arguments

when lists this set’s conditions that are either strings or dependency objects.
The condition is considered to be true if all dependencies represent de-
pendencies that have been found and if all strings have been set to true
in the condition object used as the argument in the apply method.

if _false lists the sources and dependencies to add if the condition is not true.

if _true lists the sources and dependencies to add if the condition is true.

18.16.2 add_all(source_sets, ...) — none

Joins the given source sets to the current source set. Positional and keyword
arguments work the same way as in the add method.

Keyword arguments

when is a condition similar to the one in add.

if _true lists the source sets to add if the condition is true. Note that the con-
ditions defined in the arguments are still in affect, that is, their individual
entries are only used if both this condition and the argument’s condition
are true.

18.16.3 all_sources() — source list

Returns a list of all sources added to this set and which do not have a non-found
dependency object in their condition statement.

18.16.4 all_dependencies() — dependency list

Returns a list of all dependencies added to this set and which do not have a
non-found dependency object in their condition statement.

18.16.5 apply(configuration, ...) — source configuration

Evaluates all sources and dependencies added to this source set with the given
configuration object and returns all that matched as an object. The return value
is typically used to define build targets.

Positional arguments

configuration is either a dictionary or a configuration object. Each condi-
tional string defined with an add method is checked against this configura-



18.16 SOURCE__SET

tion object. The sources and dependencies that match the corresponding
value in the dictionary are placed in the return value.

227
Keyword arguments

strict defines whether missing values should be treated as false or a hard error
The default value is true, which means that any rule that uses a variable
not defined in the configuration object is a hard error.

Usage examples

Suppose we have the following conditional build setup that has both an optional
dependency as well as a toggle option.

dl = dependency(...)
all_sources = ['always.c']
all_deps = []

conf = configuration(...)

if di.found()

all_deps += di

all_sources += files('dep_impl.c')
else

all_sources +
endif

files('fallback_impl.c')

conf.set('use_widget', get_option('widget'))
if get_option('widget')

all_sources += files('use_widget.c')
endif

executable(..., all_sources,
dependencies: all_deps)

The same functionality can be achieved with less effort by using a source set.

dl = dependency(...)

conf = configuration(...)
smod = import('sourceset')
sset = smod.source_set ()
sset.add('always.c')
sset.add(when: di,



228

18 DOMAIN SPECIFIC OBJECT REFERENCE

if_true: 'dep_impl.c',
if false: 'dep_fallback.c')
sset.add(when: 'use_widget',
if_true: 'dep_widget.c')
sconfig = ss.apply(con)
executable(..., sconfig.sources();
dependencies: sconfig.dependencies())

18.17 target_machine object

This object is identical to the build_machine object, but it refers to the target
machine. Most projects don’t need to care about target machines, only about
build and host machines. The target machine is only relevant for cross compiling
cross compilers. The different machines are documented in Chapter 12.

18.18 subproject object

This object encapsulates the result of a subproject invocation and can be used
to extract information from the subproject

18.18.1 found() — boolean

Returns true if the subproject executed successfully.

18.18.2 get_variable(name) — object

Extracts a variable from the subproject and brings it to the current project. The
result can be used as if it was generated in the current project.

Usage examples

# In a subproject
subproject_variable = 3

# In the master project

sp = subproject(...)

master_variable = sp.get_variable('subproject_variable')
# master_variable has the value 3.




Chapter 19
Function reference

This chapter describes all functions that can be called from a build definition
file. There is one additional function, option, that can only be called from an
option file. It is documented in Section 10.3.

19.1 add_global_arguments(args, ...) —> none

This function is used to easily add compilations flags for all compiler invocations
for a given language, even for subprojects. Most projects should not use this
function, but add_project_arguments instead. Calling this function from a
subproject is a hard error, because subprojects are not allowed to change the
master project’s state.

A typical use case for this function is enabling custom debug functionality
globally from the master project. As the name implies, multiple calls to this
function adds both sets of arguments. It is not possible to unset arguments from
a build file.

Positional arguments

args one or more string arguments that will be passed to all compiler invocation
for the given language.

Keyword arguments

language contains a list of one or more languages that the arguments should be
added to. Using a language not enabled by project () or add_languages
is a hard error.



230

19 FUNCTION REFERENCE

native is a boolean controlling whether the flags should be used for native or
cross compilation. If omitted this will default to native compilation when
not cross compiling and cross compilation otherwise.

Usage examples

add_global_arguments('-DCLIKE', languages: ['c', 'cpp'l)
# The argument is added to C and C++ compilations

add_global_arguments('-DIS_CROSS',
languages: 'c',
native: false)
# This argument is only used when cross compiling C.

19.2 add_global link arguments(args, ...)
— none

This function behaves identically to add_global_arguments, except that the
arguments are used during linking instead of during compilation. Similarly most
projects should use add_project_link_arguments instead of this function.
Most projects don’t need to deal with linker arguments at all. Meson provides
builtin features for most things. Linker arguments are most commonly needed

for during cross compilation, and those should be defined in the cross file rather
than in build files.

Positional arguments

args A string or string list of arguments consist of zero or more strings that will
be passed to the linker invocation for the given language.

Keyword arguments

language contains a list of one or more languages that the arguments should be
added to. Using a language not enabled by project () or add_languages
is a hard error.

native is a boolean controlling whether the flags should be used for native or
cross compilation. If omitted this will default to native compilation when
not cross compiling and cross compilation otherwise.



19.3 ADD_LANGUAGES

Usage examples

# The argument is added to C and C++ links
add_global_link_arguments('-Wl,--gc-sections',
languages: ['c', 'cpp'l)

19.3 add_languages(langs, ...) — none/boolean

Adds the given languages to the current project’s list of languages. By default the
behaviour is the same as if the language had been given in the project function.
This function is used to enable optional and platform-specific languages, such as
only enabling Java if compiling for Android or Objective C when compiling on
Apple platforms.

Positional arguments

langs should be one or more strings of language names to add.

Keyword arguments

required can be set to false to indicate that the languages are optional. In
this case Meson will return true if all the specified languages were found
and false if any one of them was not found. The default value is true
meaning that if the compiler for the given language is not found, Meson
will exit with an error.
This keyword argument can also be given a feature option. The behaviour
is the same, it merely allows you to tie the language’s required status into
a build option.

native if set to true look up a native compiler, that is, one that builds for the
“build machine”. If true, a cross compiler is searched when cross compiling
and the normal compiler otherwise. If omitted, Meson will look up both
compilers.

Usage examples

add_languages('objc')
# At this point Objective C has been found and is usable.

add_languages ('nonexisting')
# This is a hard error

231



232

19 FUNCTION REFERENCE

result = add_languages('nonexisting', required: false)
# result is false

19.4 add_project_arguments(args, ...) — none

This method behaves identically to add_global_project_args except that the
flags are only used for the current project.

Usage examples

add_project_arguments('-DCLIKE', languages: ['c', 'cpp'l)
# The argument is added to C and C++ compilations

add_project_arguments('-DIS_CROSS',
languages: 'c',
native: false)
# This argument is only used when cross compiling C.

19.5 add_project_link_ arguments(args, ...)
— none

This function behaves identical to add_project_arguments, except that the
arguments are used during linking instead of during compilation.

Usage examples

# The argument is added to C and C++ links
add_project_link_arguments('-Wl,--gc-sections',
languages: ['c', 'cpp'l)

19.6 add_test_setup(name, ...) — none

Creates a new test setup with the given name. It is enabled with a command
line argument to Meson’s test runner.

$ meson test --setup=mysetup



19.7 ALIAS_ TARGET

Positional arguments

name is a string specifying the name of the setup. Trying to specify the same
setup multiple times is a hard error.

Keyword arguments

env is an environment object specifying environment variables to set when run-
ning the tests.

exe__wrapper defines an executable that will be used to invoke the test pro-
gram. This is can either be a self built executable or the output of
find_program. This argument can also be an array, in which case the
first element is the program and the rest are arguments given to the wrap-
per program before the actual test command.

gdb is a boolean. If set to true it means that the test setup should be run
under GDB, which is the same as passing --gdb to meson test.

timeout_ multiplier is a number used to multiply the default timeout value.
Typically wrapper programs make test execution slower. This argument
can be used to override timeouts globally. This is identical to passing the
--timeout-multiplier argument to meson test.

is_ default sets the specified setup as the default.

Usage examples

valgrind = find_program('valgrind')
supp_file = meson.current_source_dir() / 'suppressions.txt'
supp_argument = '--suppressions=' + supp_file
env = environment ()
env.set ('IS_VALGRIND', '1')
add_test_setup('valgrind',
exe_wrapper: [valgrind, supp_argument],
timeout_multiplier: 50
env: env)

Tests can be run under Valgrind with this command:

$ meson test --setup=valgrind

19.7 alias_target(name, deps) — none

Creates a new target that by itself does nothing but ensures that the specified
targets are built. A common use case for this is that the project has some helper

233



234

19 FUNCTION REFERENCE

tools that are not built by default but which are needed every now and then.
Thus building this target (just as one would “build” a run_target) can be used
to provide a convenient shorthand to building all of them in one go.

Positional arguments

name is the name to give this target.
deps are one or more target objects that are built when this target is built.
They can be either build targets or run targets.

19.8 assert(condition, message) — none

If the given condition evaluates to false, prints the message and exits Meson
with a hard error.

Positional arguments

condition is a boolean specifying whether to exit or not.
message is a freeform string to be printed in case of error. If not specified,
Meson will print a prettyprinted version of the condition statement instead.

Usage examples

# Does nothing.
assert(l1 == 1, 'Equality comparison is broken.')

# Exits the program.
assert(not(1 == 2), 'Your universe has weird math axioms.')

19.9 benchmark(name, executable, ...) —> none

This function behaves identically to the function test except that it defines a
benchmark to be run with meson benchmark command rather than a test. See
the reference documentation of the test function in Section 19.48 for details.
The only difference is that there is no is_parallel keyword argument, because
benchmarks are only run strictly sequentially to minimise timing jitter.



19.10 BOTH_LIBRARIES

19.10 both libraries(name, sources, ...)
— library object

Builds the given sources both as a shared and as a static library. If possible, the
source code is compiled only once and the same object files are used for both
targets. If this is can’t be done because, for example, the compilations would
require different command line arguments, the sources are built separately for
each target.

The return value of this function represents a shared library, but it also has
methods get_shared_lib and get_static_1ib to access the shared and static
libs, respectively.

Both positional and keyword arguments for this function are the same as for
shared_library and static_library.

Usage examples

libs = both_libraries(...)

# This is static linked.
executable(..., link_with: libs.get_static_library())

# This is shared linked.
executable(..., link_with: libs.get_shared_library())

# As is this
executable(..., link_with: 1libs)

19.11 build_target(name, sources, ...)
— build target

Constructs a new build target of the specified type. With the exception of
target_type all keyword arguments listed here can also be passed to other build
target functions such as executable. They are documented here, whereas each
individual function only documents its additional keyword arguments. The most
common usage for this function is building a library either as shared or static
with a toggle of its own rather than following the value of the default_library
option.

235



236

19 FUNCTION REFERENCE

Positional arguments

name the base name of this target, meaning the output file name without any
prefixes or file extensions.

sources are source files to be used in this target. Sources can also be defined
with the sources keyword argument. If both are defined, all files from
both of them are used.

Keyword arguments

<language>_ pch specifies the files to be used as precompiled headers for this
target. This argument is per-language, so to define a precompiled header
for C++, you’d use the keyword argument cpp_pch. Some toolchains do
not permit more than one precompiled header per target, trying to specify
more than one may lead to build failures. The value may consist of at
most one header and one source file. If the source file is not specified, it
will be autogenerated when necessary.

<language>_ args is an array of strings that should be used as command line
arguments when compiling code in the specified language.

build__by_ default specifies whether this target is built when the default build
command is invoked. The default value is true.

build__rpath is a list of strings representing directories that are added to the
target’s rpath when it is in the build directory. These values are removed
from the file when it is installed.

dependencies list all dependencies needed to build this target.

extra_ files contains a list of files that should be considered part of this target
even though they are not used directly. This option does not affect building
in any way, just causes these files to be listed in the given target in IDEs
that hide the file system and instead group files by top level targets.

gnu__symbol_ visibility is a string specifying how symbols are exported from
the current target. This keyword argument is ignored on compilers that
do not support GNU symbol visibility. The value can be either empty or
one of default, internal, hidden, protected or inlineshidden. The
last one is the same as hidden but also hides C++ implicit functions.

implicit__include__directories can be set to false to prevent Meson from
adding the current source and build directories to the header search path
automatically. The default value is true.

include__directories lists directories that should be added to the header search
list. The values can either an include directories object or strings. The
latter is identical to passing the string to include_directories function
and using the result.

install is a boolean specifying whether this target is installed. The default value



19.11 BUILD TARGET

is false.

install__dir is a string specifying the install directory. The default value de-
pends on the target type, for example executables are installed to the value
specified in option bindir.

install__mode specifies the properties of the installed file. This argument con-
sists of up to three entries. The first one is a string specifying the Unix
permission bits of the file. The second and third ones specify the user and
group ids of the file, respectively. They can be specified either as a string
or as a number.

install__rpath is an array of strings specifying the rpath entries that this target
should have after install. They are not used when the binary is in the build
dir.

link args is an array of strings. These are passed to the linker when linking
this target.

link__depends lists files and targets that are required to link the current target.
If any of these dependencies change, Meson will rerun the link phase. The
most common case for this is linker scripts.

link language specifies which programming language should be used for link-
ing the target. This is only necessary for projects that mix multiple lan-
guages. Meson tries its best to choose the correct link language, but there
are cases where it is not be done reliably.

link_ whole is similar to 1ink_with except it tells the linker to link the whole
archive instead of only the parts needed to satisfy missing symbols. This
is only meaningful for static libraries. Some toolchains do not support the
concept of whole linking. In these cases Meson simulates the behaviour by
adding all the object files of the link target to the current target.

link__with lists build targets (outputs of static_library or shared_library)
that should be linked in the current target. The transitive dependencies of
shared libraries are not added to the link line but for static libraries they
are.

name__prefix is a string specifying the prefix to be used for this target. The
default value is chosen according to the target type and platform. For
example library targets usually have the prefix 1ib except on Windows
where the prefix is an empty string.

name__suffix is a string specifying the file extension for this target. If omitted
Meson will use a default value depending on the system and target type.
For example an executable’s suffix is .exe on Windows and empty on all
other platforms.

native is a boolean specifying whether this target should be cross-compiled or
native compiled. Typically you'd set this to true for targets that you
want to execute during the build, such as source code generators. Trying

237



238

19 FUNCTION REFERENCE

to install native built objects during cross compilation is a hard error.
objects lists prebuilt objects that should be linked to this target. This is only
for objects whose source code you don’t have. Objects built by this project
should be added to sources.
override_ options is an array of strings of type ’option_name=value’ that
can be used to override option values for this target.
target_ type is a string which can be one of executable, shared_library,
shared_module or static_library.

Usage examples

# A tool that is needed rarely and thus not built by default.
build_target ('debugtool', 'debugtool.c',

target_type: 'executable',

build_by_default: false)

# A system tool that can only be run by root.
build_target ('systemtool', 'systemtool.c',
target_type: 'executable',
install: true,
install_dir: '/sbin',
install_mode: ['rwx------ ', 'root', 'root'])

# Defining the target type with a project option.
build_target(...,
target_type: get_option('librarytype'))

# Build this target with C++ version 11 regardless
# of what the default language version is.
build_target(...,

override_options: 'cpp_std=c++11')

19.12 configuration_data() — configuration data

Returns an empty configuration data object.

19.13 configure_file(...) — none

Generates an output file, usually a header file, with the given name in the current
build directory. There are three different ways of creating the file. The first one



19.13 CONFIGURE__FILE

takes a template file as input, does text substitution and writes the result to
the output file. The second one takes no input file but instead serialises the
configuration data directly to the file. The third and final way generates the
output file by executing a standalone script during configuration.

Keyword arguments

capture is a boolean. If set to true, Meson will grab the external script’s stan-
dard output and write it to the output file. This is used for misbehaving
programs that won’t write their output to a file, but instead always print
it to standard out.

command is an array specifying the command to run instead of doing template
substitution. The arguments follow the same filename expansion rules as
source generation described in Section 11.3.

configuration is a configuration object. All substitution values will be taken
from this object and nowhere else. This may also be a dictionary object.
It is internally converted to a configuration object and then used.

copy is a boolean. When set to true tells Meson to just copy the input file to
the output file without doing any substitutions.

depfile is the name of a dependency file, that the generator script writes that
lists all additional files it depends on. If any of those files changes, Meson
will run a full reconfiguration.

encoding specifies the text encoding of the source and output files. Defaults
to utf8.

format specifies the format of the template file. The default value is meson for
Meson’s internal format. Can also be set to cmake to replicate CMake’s be-
haviour or to cmake@® to replicate CMake but only replace variables marked
with @ signs, not expansions of type ${variable}.

input optional input file(s) to use.

install a boolean specifying if the generated file should be installed to the di-
rectory specified in install_dir. If omitted the file will be installed if
install_dir is specified and not installed otherwise.

install__dir optionally specifies the directory the generated file will be installed
to.

install__mode behaves identically to the same keyword in a build target as
described on page 237.

output is the output filename. If the file name contains the strings @ASENAME®@
or @PLAINNAMEQ they will be expanded according to the file name rules in
Section 11.3.

output_ format defines the format of the expanded preprocessor definitions.
The default value is ¢ causing the values to be prefixed with #. The value
of asm is also supported, which causes the definitions to be prefixed with

239



19 FUNCTION REFERENCE

240 Usage examples

cdata = configuration_data()
cdata.set('key', 'value)

# The common case

configure_file(input: 'project-config.h.in',
output: 'project-config.h',
configuration: cdata)

# Generate output file from input data.
configure_file(output: 'project-config.h',
configuration: cdata)

# Install a global configuration file.
configure file(output: 'conffile',
input: 'conffile.in',
install_dir: '/etc',
install_mode: ['rw-r—--r—-', 'root', 'root'l])

# Generate a file with a script.
g = find_program('gen_script')
configure_file(output: 'outfile',

input: 'infile',

command: [g, '@INPUT@', '@OUTPUTQ'])

19.14 custom_target(name, ...) — custom target

This function allows you to create fully custom build steps. The most common
use case is generating source code for the build, but generating documentation
and converting asset files is common.

Positional arguments

name is the name of this target. It does not necessarily have anything to do
with output file(s), but it’s considered good practice to keep these two
close together.



19.14 CUSTOM__TARGET

Keyword arguments

build__by_ default specifies whether this target should be built when the de-
fault build command is executed. The default value is false, meaning
that the target will not be built unless explicitly requested. This can be
done by requesting this target to be built or indirectly by building a target
that depends on this target. If this argument is missing the target will be
built by default if install is set to true.

build_ always_ stale is a boolean. When set to true causes this target to
always be considered “out of date”. It will be rebuilt even if all its depen-
dencies are up to date.

capture is a boolean. If set to true, Meson will grab the commands standard
output and write it to the output file. This is used for poorly behaving
programs that can’t be told to write their output to a file, but instead
always print it to standard out.

console is a boolean designed to help integrate long running tasks. If true,
this target will be run in isolation, that is, no other build task is run at the
same time. It also disables console buffering, so everything the command
prints is immediately shown. This option can not be used together with
capture and attempting to do so is an unrecoverable error.

command is the actual command to be executed. This is usually an array with
the first argument being the command to run, which can be the return
value of executable, find_program or custom_target. The remaining
items are the command line arguments to be used, either strings or gen-
erated targets. Strings are expanded according to the rules described in
Section 11.3. Meson targets are automatically marked as dependencies of
this target and converted to command line strings.

depend_ files lists extra files (either strings, file objects or configure file out-
put) that this command depends on but which are not passed to the com-
mand as arguments. This is usually because the command does globbing
internally.

depends lists targets that this command depends on even though they are
not listed on the command line. Like with depend_files this is usually
because the command does some form of globbing internally.

depfile is the name of the dependency file that the command generates. This
file must be generated in the same Makefile-esque format that compilers
generate by default.

input contains the list of input files.

install causes the target to be installed when set to true. Requires install_dir
to be specified also.

install_ dir lists the directory to install the output file(s) to.

install__mode behaves identical to the same keyword in a build target as de-

241



242

19 FUNCTION REFERENCE

scribed on page 237.
output the output file name(s).

Usage examples

prog = find_program(...)

# convert file.idl -> file.c
gen_c = custom_target('c_generator',
input: 'file.idl',
output: 'G@BASENAMEQ.c',
command: [prog, '@INPUT@', '-o', '@OUTPUTQ'])

# Generate source and header.
gen_files = custom_target('c_generator',
input: 'file.idl',
output: ['OBASENAME@.c', 'OBASENAMEQ.h']
command: [prog, '@INPUT@', '--outdir', '@OUTDIRQ'])

# Convert texture and install it:
custom_target(. ..

input: 'texture.png',

output: 'texture.dds',

command: ...,

install: true,

install_dir: 'share/mygame/textures')

19.15 declare_dependency(...)
— dependency object
Creates a new dependency object that can be used to build targets. The result

can be used interchangeably with other dependency objects, such as the return
value of dependency().

Keyword arguments

compile__args lists the compilation args needed to use this dependency. This
should only be used for special arguments that can not be expressed with
the other keyword arguments.



19.15 DECLARE__DEPENDENCY

dependencies are other dependencies needed to use this dependency. Typically
needed for cases such as when this dependency exposes some part of their
dependencies (such as data types) and thus you need the original headers
to be able to compile code.

include__directories lists the include directories in the same format as in a
build_target.

link args lists the arguments that should be passed to the linker. Like with
compile_args, this should only be used for special arguments.

link_ with lists targets that should be linked with just like in build_target.

link_ whole lists targets (static libraries) that should be wholly linked in the
same format as build_target.

sources is an array of source files that should be added to the target. A common
case is to list generated headers needed to use this dependency. This will
make Meson ensure that all of these files have been created before any
source code is built.

variables is a dictionary of arbitrary string that can be queried from the gener-
ated dependency object. They behave just like the corresponding variables
in external dependencies, like pkg-config. Typically these are defined to
have the same entries as external pkg-config files so that the two depen-
dencies can be used interchangeably.

version is a string specifying the version of this dependency.

Usage examples

lib = library(...)
inc = include_directories('include')

# Create a simple dependency.

my_dep = declare_dependency(link with: lib,
include_directories: inc)

# Then use it in a different directory

executable(..., dependencies: my_dep)

# The above is identical to adding the individual
# items directly as keyword arguments.
executable(...,

link_with: 1ib,

include_directories: inc)

243



244

19 FUNCTION REFERENCE

19.16 dependency(name, ...)
— dependency object

Finds a dependency either from the system or by building a subproject. By
default the system lookup is done in the “system native” way falling back to
other methods if not found. The default lookup mechanism is Pkg-config, as it
is the most widely used system in practice.

Positional arguments

name is a string specifying the name of the dependency to search for.

Keyword arguments

components can be used to specify CMake COMPONENTS to use during library
lookup. This keyword argument is only available when looking up CMake
dependencies.

default_ options is an array of strings defining default options that should be
used in case the dependency is provided by a subproject. The option values
specified here override the default options set in the subproject’s project
call. Note that they can only contain project options, not Meson options
because those have already been set up.

disabler will cause, when set to true, a disabler object to be returned for
not found objects. If set to false, which is the default, a non-found
dependency object is returned instead.

fallback tells Meson how to obtain this dependency if it is built as a subproject.
It consists of an array of one or two strings, the subproject name and a
variable name. These should point to a variable in the subproject that
holds the desired dependency object. If using only one string, then the
subproject must specify which variable holds the dependency either via a
wrap file or with override_dependency.

is_ system is a boolean specifying whether the include directories defined by
the dependency should be treated as “system directories”. This reduces
compiler warnings, as most compilers do not print warnings that originate
from system headers. Default value is false.

language specifies which programming language the dependency is for. This is
needed for some dependencies that are used differently from, say, C++ and
Fortran.

method is a string specifying how the method should be looked up.

native is a boolean specifying whether the dependency will be used for native
or cross compilation. If unset defaults to native building when not cross



19.17 DISABLER

compiling and not native when cross-compiling.
modules is a list of strings for defining which subparts of the dependency should
be used. Some large dependencies such as Qt and Boost ship a bunch of
small individual components instead of just one main dependency. The
way a dependency is split into modules is not specified, each dependency
is free to choose their own module setup.
not__found__message is a string that is printed if the dependency is not found.
required is a boolean specifying whether this dependency is mandatory. De-
faults to true. Failing to look up a mandatory dependency is a hard error.
static is a boolean telling whether Meson should look for a static or shared
library version of the dependency. Not all backends support this argument.
version specifies version requirements for the dependency. This can be ei-
ther a string or an array of multiple strings in the format required by
version_compare. The exact format is described in string object’s method
reference in Section 17.6.12. The version is considered suitable if it passes
each listed requirement.

Usage examples

# Basic lookup
sd12_dep = dependency('sdl2')

# Use sdl2-config instead of pkg-config
sd12_dep = dependency('sdl2', method: 'config-tool')

# Get Qt 5's GUI widget libraries only.
qtbwidget_dep = dependency('qt5', modules: ['Widgets'])

# Version requirements
foo_dep = dependency('foo', version: '>=1.0.0')

# Return a disabler
some_dep = dependency('nonexisting', disable: true)

# Always returns a non-found dependency.
unfound_dep = dependency('', required: false)

19.17 disabler() — disabler object

Creates a disabler object.

245



246

19 FUNCTION REFERENCE

19.18 environment(initial values)
— environment object

Creates a new environment object.

Positional arguments

initial__value is an optional dictionary object. If specified, its entries are added
to the resulting environment object.

19.19 executable(args, ...) — none

Creates an executable, that is, a binary that can be run.
This function supports all the same keyword arguments as build_target.
See Section 19.11 for further reference.

Keyword arguments

export__dynamic is a boolean specifying whether the symbols in the exe-
cutable will be exported to the global symbol table. This property is
also known as rdynamic in some toolchains.

gui__app is a boolean specifying that the executable should be treated as a
graphical application rather than a command line executable. This dis-
tinction only exists on few platforms, chiefly Windows. It is ignored on
other toolchains.

implib if true generates an import library which can be used to link other
targets against this executable as if it was a library. This argument is only
used on Windows and ignored on all other platforms.

Usage examples

# The common case.
executable('hello', 'hello.c',
install: true)

# Lua is typically used by bundling it inside

# the main executable. In order to use Lua plugins,
# with dlopen(), we must export the symbols from

# the executable.

lua_lib = static_library(...)



19.20 ERROR

executable(. ..
link with: lua_lib,
export_dynamic: true) 247

19.20 error(message) — none

Prints the given message string and exits the current Meson invocation with a
hard error.

Positional arguments

message is a string with the message to be printed.

Usage examples

error ('An <unexpected event> has happened.')

19.21 find_program(names, ...)
— program object

Finds a program with the given name from the system. If the program name
has been overridden with meson.override_find_program, the value set in that
call is returned.

In addition to programs this code will also look up executable scripts in the
path and in the current source directory. The lookup parses Unix shebang lines
of scripts on platforms that do not support them natively. In practice this means
Windows.

Positional arguments

names are one ore more strings with command names to look up. They should
not have an .exe suffix even on Windows. Meson will look up the com-
mands one by one and returns the first one that could be found.

Keyword arguments

dirs lists one or more additional directories, such as /usr/local/bin, where
the program should be looked up in.

disabler is a boolean. When set to true Meson will return a disabler object
rather than a not found object when the program can’t be found.



19 FUNCTION REFERENCE

native tells whether the program should be looked up in the cross file (when
set to false) or from the system (when true). Default value is false.
2 48 required a boolean specifying whether the failure to find a program is a hard
error. The default is true.

Usage examples

# The default case. Exits with a hard error if the program
# can not be found.
prog = find_program('prog')

# The program is optional
notfound_prog = find_program('nonexistin', required: false)

# This program has different names on different platforms.
prog = find_program('prog', 'a_prog', 'the_prog')

# Look up a program from directories not usually in path.
prog = find_program('prog',

'/usr/local/bin/prog',

'/sbin/prog')

19.22 files(list of files)
— array of file objects

Converts the given input file names into file objects. They are more convenient
to use than string arrays. File objects are guaranteed to exist on the file system.
That is, calling this function with a string pointing to a non-existing file is a
hard error. In addition file objects remember their locations. You can use them
in any directory and Meson will automatically expand the object to point to the
original file.

Positional arguments

list of files are one or more strings representing file names to convert to file
objects. Relative paths are interpreted from the current source directory.

Usage examples



19.23 GENERATOR

# The common case.
f = files('foo.c', 'bar/bob.c')

# Absolute paths are also supported.
f = files('/usr/share/something/file.c')

19.23 generator(executable, ...)
— generator object

Creates a new generator object, which encapsulates a command to do file trans-
formation. It can be used to apply the same operation to a bunch of input
files.

Positional arguments

executable is the program that will be called to do the transformations. Can be
either the result of find_program or an executable or a custom_target.

Keyword arguments

arguments list all the command line arguments that will be used when calling
the program. Special strings will be replaced with real values as described
in Section 11.3.

capture is a boolean. When set to true it tells Meson to take the program’s
output and write that to the output file. This is used to deal with uncoop-
erative programs that always their results to standard output rather than
to an output file.

depfile is an optional file name describing the file where the called program will
write dependency information. The output of this file must be in the same
Makefile-esque format that compilers use. If the program does not create
a depfile, this keyword argument should be omitted.

output is a template string describing how the output file name can be derived
from each input file. The substitution uses the rules defined in Section 11.3.

Usage examples

# A simple source generator.
# Converts file.idl to file.c
g = generator(gen_exe,

249



250

19 FUNCTION REFERENCE

arguments: ['GINPUT@', '-o', '@OUTPUTQ']
output: '@BASENAME@.c')

# Create both source and header files

g = generator(gen_exe,
arguments: ['Q@INPUT@', '--outdir', '@BUILD_DIRQ'],
output: ['@BASENAMEQ.c', 'OBASENAMEQ.h']

# Include directory and a dependency file.

# The generator writes the dep file automatically

# next to the output file.

g = generator(gen_exe,
arguments: ['@INPUT@', '-o', '@OUTPUTQ', '--dep'],
depfile: '@OUTPUT@.d',
output: '©@BASENAMEQ.c')

19.24 get_option(name, ...) — various

Returns the value of the given option. These can be either Meson global options
such as prefix or current project’s options. Accessing options of other projects
is prohibited.

The type of the return value depends on the option. It can be a string,
integer, array, or a feature object.

Positional arguments

name is the option to look up.

Usage examples

# On Unix machines this is typically '/usr'
p = get_option('prefix')

# Building an absolute path to the library directory.
ldir = get_option('prefix') / get_option('libdir')

19.25 get_variable(name, fallback) — object

Get the value of the build file variable with the given name.



19.26 IMPORT

Positional arguments

name is a string specifying the variable to look up.

fallback is an optional value that is returned if the specified variable did not
exist. Requesting a nonexisting variable without specifying a fallback is a
hard error.

Usage examples

var = 'text'

# Identical to var2 = varl
var2 = get_variable('varl')

# var3 gets the value 'default'
var3 = get_variable('nonexisting', 'default')

19.26 import(name) — module object
Loads a Meson extension module and returns it. Extension modules include
additional helper functionality for frameworks and tools that is not the core

language.

Positional arguments

name is a string with the name of the module to import.

Usage examples

# Create a Python extension module

python_mod = import('python3')

py3_dep = dependency('python3')

python_mod.extension_module('baz', 'baz.c',
dependencies: py3_dep)

19.27 include directories(dirs, ...)
— include directories object

Creates an include directories object containing the given directory names. The
command verifies that all given directory names exist and errors out if they

251



19 FUNCTION REFERENCE

don’t. The return value can be used in any other subdirectory, and Meson will
automatically make paths work correctly.

252 When the return value is used in a build target, Meson will add both the
source and build directories to the target’s include path.

Positional arguments

dirs contains one or more strings to place in the include dir object. Relative
paths are interpreted relative to the current source dir.

Keyword arguments

is_ system is a boolean specifying if the include directive should be defined
as a system directory. This is used to make compilers not print warnings
that come from files in these directories. Some toolchains do not support
the concept of system directories and on those this keyword argument is
ignored.

Usage examples

# Store the directory
inc = include_directories('include')

# Use the result in a different directory.
executable(..., include_directories: inc)

19.28 install data(files, ...) — none

Installs individual files.

Positional arguments

files are the files to be installed.

Keyword arguments

install__dir is a string defining the target directory for the files. If not defined
the default value is datadir/project name where datadir is the value of
the Meson option with the same name.

install__mode behaves identical to the same keyword in a build target as de-
scribed on page 237.



19.29 INSTALL HEADERS

rename is an array specifying if and how the files should be renamed upon
install. Each item can be either false meaning the file won’t be renamed
or a string specifying the installed name.

Usage examples

# Prefix has been set to '/usr'
# Datadir has been set to 'share'
# Project name has been set to 'example'

# Installs to /usr/share/example/texture.png
install_data('texture.png')

# Installs to /usr/share/example/installed.png
install_data('in_sourcetree.png',
rename: 'installed.png')

# Installs to /usr/share/example/texture.png

# and to /usr/share/example/sub/installed.png

install_data('texture.png', 'in_sourcetree.png',
rename: [false, 'sub/installed.png'])

19.29 install headers(files, ...) — none

Installs files in the specified header directory as defined by the option headerdir.

Positional arguments

headers list of files to be installed.

Keyword arguments

install__dir overrides the default install directory. This path is interpreted
relative to prefix, not headerdir.

install _mode behaves identical to the same keyword in a build target as de-
scribed on page 237.

subdir specifies a subdir under the include dir path where files should be in-
stalled to. If both subdir and install_dir keywords are specified, the
latter has precedence.

253



254

19 FUNCTION REFERENCE

Usage examples

# Prefix has been set to '/usr'
# Headerdir has been set to 'include'

# Install a single header to
# /usr/include
install_header('myheader.h')

# Path segments in source files are dropped.
# Both these files go to /usr/include
install_header('headerl.h', 'sub/header2.h')

# This header goes to /usr/include/myproj
install_header ('myheader.h', subdir: 'myproj')

# This header goes to /usr/foo/bar.
install_header('myheader.h', install_dir: 'foo/bar')

19.30 install man(files, ...) — none

Install man pages to the correct system directory. Man pages have their own file
system layout requirements. Meson will do all that work automatically, assuming
that the files have been named in the standard way for man pages.

The files must be in the manpage format. Meson does not do any validation
on file contents, but instead assumes them to be correct.

Positional arguments

files are the man page files to be installed.

Keyword arguments

install__dir can be used to override the directory to install to.
install _mode behaves identical to the same keyword in a build target as de-
scribed on page 237.

Usage examples



19.31 INSTALL_SUBDIR

# Man dir on this system is /usr/share/man

# Installs to /usr/share/man/manl
install_man('myprog.1')

19.31 install subdir(subdir, ...) — none

Installs the subdirectory and all its contents transitively.

Positional arguments

subdir is the subdirectory to be installed.

Keyword arguments

exclude_ files is a list of files, relative the the subdirectory, that should not be
installed.

exclude__directories is a list of directory trees, relative to the subirectory,
that should not be installed.

install_ dir is a string specifying the target directory.

install _mode behaves identical to the same keyword in a build target as de-
scribed on page 237.

strip__directory is a boolean that can be used to strip the leading directory.
Another way of looking at this is that the value of true will install the
contents of the specified directory rather than the directory itself.

Usage examples

# Assume we have the following tree structure:

topdir
subl
sub2
sub2file.dat
sublfile.dat
topfile.dat

H OH H H H O H

HH+

Install result is:
usr
share

H =

255



256

19 FUNCTION REFERENCE

# prog

# topdir

# subl

# sub2

# sub2file.dat

# sublfile.dat

# topfile.dat

install_subdir('topdir', install_dir: 'share/prog')

# Install result is:

# usr

# share

# prog

# subl

# sub2

# sub2file.dat
# sublfile.dat

# topfile.dat

install_subdir('topdir',
install dir: 'share/prog',
strip_directory: true)

# Install result is:

# usr

# share

# prog

# sub2

# sub2file.dat

install_subdir('topdir/subl/sub2',
install dir: 'share/prog')

19.32 is_disabler(variable) — boolean

Returns true if the variable given as the argument is a disabler object and false
otherwise.



19.33 IS VARIABLE

19.33 is variable(variable name) — boolean

Returns true if the variable with the name given as the argument exists and
false if not.

Positional arguments

variable_ name is a string specifying the variable to look up.

Usage examples

var = 42

# Returns true
is_variable('var')

# Returns false
is_variable('nonexisting')

19.34 jar(name, sources, ...) — none

Defines a Java jar target. This is its own object type because jars are special in
that they can be both libraries and executables at the same time. Calling this
function without enabling Java is a hard error.

Positional arguments

name is the name of the jar file (without the .jar suffix).
sources are source files to compile in this target.

Keyword arguments

main__class defines the Java main class, that is, the class that holds the main
function. The Java run-time system needs this information in order to be
able to run this jar file as an executable. The class must be specified in
the Java class notation i.e. as com.mesonbuild.ClassName.

In addition this function accepts all the same arguments as build_target.

257



258

19 FUNCTION REFERENCE

Usage examples

# The simple case
jar('sample', 'com/mesonbuild/prog/Helper.java')

# An executable jar.

# Can be run with "java -jar prog.jar"

jar('prog', 'com/mesonbuild/prog/SampleProg.java’,
main_class: 'com.mesonbuild.SampleProg')

19.35 join_paths(paths) — none
This function is deprecated and should not be used in new code. Paths should

be joined with the / operator instead.

19.36 library(name, sources, ...) — library
object

Builds a library target that can be either a shared, static, or both depending on

the value of the default_library option.

All arguments behave in the same way as in other library functions. See
static_library and shared_library for further information.

19.37 message(text) — none

Prints the given string to standard out.

Positional arguments

text contains one or more strings to print. Multiple strings are separated by a
space.

Usage examples

# Prints out the following:
# Message: This is a message.
message('This is a message.')




19.38 RUN_COMMAND

19.38 run_command(command, args, ...) — run_result

Positional arguments

command is the command to run, either a string, a file type object, com-
piler object or the result of find_program. Note that this may not be an
executable as the command is invoked immediately, that is, before any
compilations have been done.

args are the command line arguments to use. They should be in an array like
[’-foo’, ’-bar’] rather than a single string like *foo -bar?).

19.39 run_target(name) — none

Creates a new top level target that runs the specified command when invoked.
This target is meant to give names to standalone commands that need to be
run every now and then, such as invoking a source code formatter on the entire
project.

The working directory is unspecified and may be different on different back-
ends.

Positional arguments

name is the name given to the target.

Keyword arguments

command is an array specifying the command to run. The first argument is a
program and the rest are the arguments given to it. These can be either
strings or build targets, which will be automatically expanded to point
to the output files. Meson will also add suitable target dependencies so
that those targets are guaranteed to be up to date before the run target
command is executed.

depends lists additional targets that need to be up to date before this command
can be run even though they are not listed on the command line.

Usage examples

exe = executable(...)
1ib = library(...)
formatter = find_program('code-formatter"')

259



19 FUNCTION REFERENCE

# Reformat all source code
run_target ('reformat’,
260 command: [formatter, '--dir', meson.current_source_dir()])
# Both exe and 1lib are built before running the command.
run_target('something',
command: [exe, '--do-something-with', 1lib])

# The program searches for the library on its
# own. We need to tell Meson that the library
# must be built before running this command.
run_target ('something',

command: [exe, '--magic-glob'],

depends: 1ib)

19.40 set _variable(name, value) — none

Sets the variable with the given name to the given value.

Positional arguments

name is a string specifying the variable to set.
value is the value to set.

Usage examples

# This is identical to

# x = 'value'
set_variable('x', 'value')
19.41 shared_library(name, sources, ...)

— shared library object

Creates a shared library.

Positional arguments

name is the name of the library. This name should not have a “lib” prefix, it
will be added automatically on platforms that require it.
sources is a list of sources to use in this target.



19.42 SHARED MODULE

Keyword arguments

darwin__versions can be used to specify macOS compatibility_version and
current_version properties. If the argument has only one value, it will be
used for both properties. If the argument is an array with two elements,
they will be used for the two properties respectively. If this keyword is
omitted, the value of soversion is used instead it it exists.

soversion is a string or an integer specifying the soversion of this library. The
value should be a single number and will be automatically mapped to
the appropriate platform specific behaviour (these vary widely). If not
specified, the first digit of the version keyword argument is used instead
if it exists.

version is a string specifying the version of this library. This string should
consist of three digits separated by periods, such as 1.2.3. If not specified
the soversion argument is used instead.

vs__module__defs is a file defining how symbols should be exported from the
current library. Can be a string, File object or the output of custom target
and it must be in the format understood by the Visual Studio compiler.
Ignored on other compilers.

In addition this function accepts all keyword arguments of a build_target.

Usage examples

# Basic library
lib = shared_library('foobar', 'foobar.c')

# Versioned library

lib = shared_library('foobar', 'foobar.c',
version: '1.2.3',
soversion: '1')

19.42 shared module(name, sources, ...)
— shared module object

Builds a shared module. The difference between shared libraries and modules
is that the latter are not linked against. They are only opened at runtime with
dlopen or an equivalent function.

All arguments to this function are the same as for shared_library.

261



262

19 FUNCTION REFERENCE

19.43 static_library(name, sources, ...)
— static library object

Builds a static library with the given name.

Positional arguments

name is the name of the library. This name should not have a “lib” prefix, it
will be added automatically on platforms that require it.
sources is a list of sources to use in this target.

Keyword arguments

pic is a boolean specifying whether the code should be built as position inde-
pendent code. This is required if the library will be linked to either a
shared library or a position-independent executable. If unset, the value of
option b_staticpic will be used instead.

In addition this function accepts all keyword arguments of a build_target.

Usage examples

# Basic library
lib = static_library('foobar', 'foobar.c')

# This static library does in a shared library so
# build it with PIC unconditionally.
stlib = static_library(...,
pic: true)
shared_library(...,
link with: stlib)

19.44 subdir(dirname, ...) — none

Recurses to the specified subdirectory and executes the meson.build file there.
Trying to enter the same directory twice is a hard error as is trying to go outside
the source tree or cross a subproject boundary.



19.45 SUBDIR__DONE

Positional arguments

dirname is a string specifying the directory to enter. Can contain multiple
path segments.

Keyword arguments

is_ found takes one or more dependency objects and only goes in the subdirec-

tory if all dependencies are found.

Usage examples

subdir('src')

# Directory is not entered
subdir('tests', if_found: unfound_dependency)

19.45 subdir _done() — none

Stops processing this file and returns to the parent directory.

Usage examples

subdir_done ()
message ('This message will never be printed.')

19.46 subproject(name, ...)
— subproject object

Executes the specified subproject. The project must be in the subprojects
directory in the master project’s root. A subproject can be invoked multiple
times but it will only be executed once. Subsequent subprocess invocations
return the same value as the first one.

Usually subprojects are not entered directly, but instead they are used indi-
rectly via the dependency function’s fallback keyword argument.

Positional arguments

name is a string specifying the name of the subproject.

263



2064

19 FUNCTION REFERENCE

Keyword arguments

default__options can be used to override the project’s default options. Its
behaviour is identical to the same keyword argument in dependency.

version specifies version requirements for the subproject. Its behaviour is iden-
tical to the same keyword in dependency.

Usage examples

# Basic usage
sSp = subproject('somelib')

# Version requirements
sp = subproject('somelib',
version: ['>=1.0.0', '<2.0.0'])

19.47 summary(values, ...) — none

Calling this function causes a piece of summary data to be printed at the end of
the configuration run, just before Meson exits. This is most commonly used to
print configuration items in a coordinated fashion. Each summary item consists
of three pieces, a key, a value and an optional section. The values will be printed
grouped first by subprojects and then by sections.

Positional arguments

values specifies the value(s) to print. It takes either two arguments which are
the key and the value or a dictionary of key—value pairs. The behaviour
of the latter is the same as calling this function for each individual entry
in the dictionary. Keys must be strings. Values can be either a string,
integer, a boolean or an array of same.

Keyword arguments

bool__yn if set to true, prints boolean values as yes and no rather than true
and false. Defaults to false

list__sep is a string that defines how the elements of an array should be sepa-
rated. If omitted, the values are separated by a newline.

section lists the section this message should be printed under. If unset, the
summary is printed in the top level “project” section.



19.48 TEST

Usage examples

# The following two calls are identical
summary ('key', 'value')

d = {'key': 'value'}

summary (d)

# The contents of arrays are prettyprinted
summary ('plugins', ['one', 'two', 'three'])

summary ('Printer support', True,
section: 'features',
bool_yn: true)

# Comma separated values.

summary ('choices',
['one', 'two', 'three'],
list_sep: ', ') # Note the space.

19.48 test(name, executable, ...) —> none

Defines a test, which is an executable and all related state needed to run it. The
outcome of a test depends on the return value of the program. Zero is success, 77
means skipped and every other value means failure. A skipped test is one that
could not be run, usually because some runtime information is not available, but
that this should not be considered a failure.

Positional arguments

name is the name of the test. It is printed in logs and can be passed to meson
test to run individual tests.

executable is the program to run. Can be the return value of executable,
custom_target or find_program.

Keyword arguments

args contains the command line arguments to pass to the program. The most
common ones are strings, but you can also pass Meson objects such as
build targets. They will automatically be converted to strings that point
to the results.

205



266

19 FUNCTION REFERENCE

depends lists those targets that are needed to run this test, even though they
are not used as command line arguments. Meson ensures that these targets
are built and up to date before running this test.

env lists the environment variables that should be set. This is typically an
environment object, but can also be an array of strings in the format
[’keyl=valuel’, ’key2=value2’].

is_ parallel is a boolean specifying whether the test can be run in parallel with
other tests. If set to false the test runner will ensure that no other test
is running at the same time.

priority is an integer listing the priority level of this test. This value can be
positive or negative with the default value of 0. The test runner arranges
tests to be run in decreasing order of priority.

protocol specifies the type of the test. The default value is exitcode but it
can also be gtest or tap for better integration with Google Test or the
Test Anything Protocol, respectively.

should_ fail inverts the success logic. If set to true the test is considered
successful if it returns a non-zero return value and failed if it returns zero.
A return value of 77 is always considered as skip.

suite has one or more strings defining the test suites for this test. The Meson
test runner can then be told to run, or not run, certain suites with the
--suite and --no-suite command line arguments.

timeout is a number specifying how long in seconds this test is allowed to run.
A test that exceeds this amount is killed and the test is marked as failed.
The default value is 30 seconds.

workdir is an absolute path to a directory that should be used as the working
directory of the test. The default working directory is unspecified.

Usage examples

executable(...)
library(...)

exe
1lib

# Passing the library as an argument.
# Meson will convert the lib object into a string
# pointing to the 1lib file automatically.
test('args', exe,

args: 1lib)

# Run the test in a different directory.
test('in_tmp', exe,



19.49 vcs  TAG

workdir: '/tmp')

# Set environment variables
e = environment ()
e.set ('NAME', 'VALUE')
test('envvar', exe

env: e)

# Tag test as slow:
test('slow', exe,
suites: 'slow')
# Run all tests except those tagged as slow:
meson test --no-suite slow

19.49 vcs_tag(...) — file object

This function takes a user defined template file and generates a new file that
contains the version control commit ID. The generated file is guaranteed to
always be up to date. If the current commit id changes, such as via doing a new
commit, the next build will contain the new commit id.

Keyword arguments

command is a command array in the same format as in custom_target. If
specified the file will be generated with this command rather than string
substitution.

fallback is the value if the project is built outside revision control, e.g. from a
release tarball. If omitted, defaults to the current project version.

input is the input template file.

output is the output file name.

replace_ string is the string that should be replace. The default value is
QVCS_TAGQ.

Usage examples

# contents of template file are:
# #define VCSTAG "QVCS_TAGQ"

vcs_header = vcs_tag(input: 'vcs_version.h.in',
output: 'vcs_version.h')
executable(..., vcs_header, ...)

267






Chapter 20
Module reference

Modules in Meson are kind of like the standard library in programming lan-
guages. They provide functionality that is useful, but not fundamental enough
to be part of the core language. All module functionality is used in the same
way.

my_mod = import('modulename')
my_mod.do_something(...)

The import command is used to activate the module, which is stored in a
variable. Calling methods on this variable allows you to use the functionality.
In addition to modules listed here Meson has several unstable methods

20.1 cmake module

The cmake module can be used to generate CMake dependency information files
on install. These dependencies are called packages in CMake. This module
consists of two methods which have the same names and behaviour as CMake
functions with the same names. Extensive documentation on their usage can be
found on CMake’s reference documentation.

20.1.1 write_basic_package_version_file(...) — none

Generates and installs a CMake file that specifies a package and its version.

Keyword arguments

name is the name of the CMake package to create.
version is the version of the package as a string.



270

20 MODULE REFERENCE

compatibility specifies the dependency compatibility type. It can be set to
AnyNewerVersion (the default), SameMajorVersion, SameMinorVersion
or ExactVersion

install__dir is the directory to install to. If not set, defaults to the value
get_option(’libdir’) / ’cmake’ / name.

20.1.2 configure_package_config file(...) — none

Generates and installs a file that specifies a CMake module. The previous
method defines only the version, this method generates all the information
needed to actually use the module. This method behaves similarly to the
configure_file Meson function. It generates the output file from an input
template and a configuration data object.

Keyword arguments

name is the name of the package as a string.

input is a template file for the package. The format should be the same as in
CMake.

install__dir specifies the directory to install to. If not set, defaults to the value
get_option(’libdir’) / ’cmake’ / name’

configuration is a configuration data object with the values that will be written
in the output file.

Usage examples

# In CMake you need to generate both a version and
# a config file to get a working dependency module.
cmake_mod = import('cmake')
conf = configuration_data()
conf.set(...)
cmake_mod.write_basic_package_version_file(name: 'myProject',
version: '1.0.0')

cmake_mod.configure_package_config file(

input: myProjectConfig.cmake.in',

name: 'myProject',

configuration: conf,




20.2 DLANG

20.2 dlang module

This method provides helper functionality for programs and libraries written in
the D programming language.

20.2.1 generate_dub_file(project_name, source_dir, ...)
— none

Dub is the D language’s package manager and dependency provider system.
This function generates a file needed to integrate a Meson project with Dub.
Positional arguments

project__name is the Dub name for this project.

source__dir points to the directory holding the D source for this project.
Keyword arguments

This method accepts arbitrary keyword arguments with string values. They are
written in the Dub JSON file as-is. If a file for the given project already exists,
Meson will only overwrite the key values listed in keyword arguments. All other
values in the JSON will be preserved.

Usage examples

dlang.generate_dub_file('myprogram', meson.source_root(),
# These two are required for packages
# submitted to Dub package registry.
description: 'Sample program',
license: 'MIT')

20.3 fs (filesystem) module

The filesystem module contains functionality to inspect the contents of the file
system and to manipulate paths. Methods of the latter type do not touch the
file system, they operate purely on strings.

All methods treat non-absolute paths as being relative to the directory where
the current meson.build file resides.

Meson exposes the underlying file system semantics directly rather than try-
ing to define cross platform behaviour on top of it. This means that some
methods may work differently on different platforms. This also means that all

271



272

20 MODULE REFERENCE

methods follow symlinks transparently unless otherwise specified. Trying to ac-
cess non-existing filesystem entries always leads to a fatal error.

20.3.1 exists(entry_name) — boolean

Returns true if the argument string points to an entity on the file system. It
can be either a file, directory, Unix device or something else. This function
may return false even if the given file actually exists, for example because the
current user does not have read access to the file.

Positional arguments

entry_ name is a string holding the file name to check, for example d/file.txt.

20.3.2 hash(file_name, hash_type) — string

Calculates a checksum of the given file’s contents. The return value is a string
in the common human-readable “hex digest” format.

Positional arguments

file__name is the file name to process.
hash_ type is the hash algorithm to use, can be one of md5, shal, sha224,
sha256, sha384 or shab12.

Usage example

# the input file contains the text "abc123"
h = fs.hash('input_file.txt', 'shal')

# Value of h is:

# 6367c48dd193d56ea7b0baad25b19455e529f5¢ee

20.3.3 is_dir(dir_name) — boolean

Identical to exists but returns true only if the thing pointed to is a directory.

20.34 is file(file_name) — boolean

Identical to exists but returns true only if the thing pointed to is a regular
file.



20.3 FS (FILESYSTEM)

20.3.5 1is_samepath(filel, file2) — boolean

Returns true if the two argument strings point to the same file. This can be
either because one is a symlink to another or because the paths resolve to the
same entry.

Usage example

filenamel = 'file.txt'
filename2 = './file.txt'
filename3 = 'symlink_to_file.txt'

fs.is_samepath(filenamel, filename2) # returns true
fs.is_samepath(filenamel, filename3) # returns true

20.3.6 is_symlink(file_name) — boolean

Identical to exists but returns true only if the thing pointed to is a symlink.

20.3.7 name(file_name) — string

Returns the last path segment (the “file name”) of the given path string.

Usage examples

fs.file_name('dir/file') .name() # returns 'file'
fs.file_name('diril/dir2/file') .name() # returns 'file'

20.3.8 parent(file_name) — string

Returns the “parent directory” of the given filename string.

Usage examples

fs.parent('dir/file') # dir
fs.parent('dirl/dir2/file') # dirl/dir2

273



274

20 MODULE REFERENCE

20.3.9 replace_suffix(filename, new_suffix) — string

This method can be used to manipulate the suffix (or file extension) of the given
file name. Note that this method does not touch the file system, it only does
string replacements. The file suffix is defined to be everything following the last
period in the file name. Thus the suffix for name.suf1.suf2 is .suf2 and for
dir.1/fname the suffix is the empty string.

Usage example

fs.replace_suffix('file.sufl.suf2', '') # file.sufl
fs.replace_suffix('file.suf', '.bak') # file.bak
fs.replace_suffix('file', '.suf') # file.suf

20.3.10 size(file_name) — integer

Returns the size of the given file in bytes.

20.4 gnome module

The Gnome module provides helper functionality for tools provided by the
GNOME development platform. Many of these are fundamental pieces of in-
frastructure used on all Linux systems.

Many methods and especially their arguments in this module map directly to
the underlying concepts of the tools and frameworks used. An in-depth explana-
tion could take a book all its own and is thus out of focus for this manual. This
section aims to give a rough understanding of the various parts, but for details
the reader is encouraged to look up the reference documentation as provided by
GNOME.

20.4.1 compile_resources(name, resource_file, ...)
— [c_source, h_source] or [resource bundle]

The GResource mechanism is a way to embed binary data directly in executables.
Its input is a file written in XML specifying which files should be embedded.
The resouce compiler reads the file and converts the contents of the resources
into plain C arrays that can be compiled in the application or into a special
bundle file that can be loaded at runtime. The generation is done with the
glib-compile-resources tool provided by GLib.

When generating sources, the return value of this function should be put in
the source list of the target that uses said resources.



20.4 GNOME

Positional arguments

name is the base name given to the resource file.
resource__file is a path pointing to the resource file to be processed. By con-
vention the file’s name is projname.gresources.xml.

Keyword arguments

c__name specifies the name prefix to be used for entries when generating source
code.

dependencies is a list of extra targets that need to be built before this target
can be run. Usually because the output of those targets is put in this
resource setup.

export a boolean telling whether the symbols in the generated source code
should be exported. Defaults to false.

extra__args is an array of strings that will be passed to the resource compiler
unaltered.

gresource__bundle will, if set to true, generate a resource bundle instead of
source code. Note that this option changes the type of the return value.
Defaults to false.

install is a boolean specifying whether the generated resource bundle should be
installed or not.

install__dir specifies the directory where installed artifacts should go.

install__header causes, when set to true, the generated header to be installed.

source__dir is a list of directories where the resource compiler should look for
binary files.

Usage examples

S_res = gnome.compile_resources(
'sample, 'sample.gresource.xml',
source_dir: 'textures', # look up files in this subdir
c_name: 'smpl'

# The return value must be used in the target
# that uses the resources.
executable(..., s_res, ...)

275



276

20 MODULE REFERENCE

20.4.2 compile_schemas(...) — none

In the context of GNOME a schema defines the settings an application has.
These schemas are defined in XML files that need to be compiled into a binary
form and installed. This is done with the glib-compile-schemas program.
This program takes no input, all schema files must reside in the current source
directory and must have the extension .gschema.xml.

Keyword arguments

build__by_ default if set to true (which is the default) causes the schemas
to be built during normal compilation. Otherwise they are only built on
install.

depend__files is a list of files that should be listed as schema sources, meaning
that changing them will cause the schema file to be recompiled.

20.4.3 gdbus_codegen(name, ...)
— [c_source, h_source, docbook_target]

D-Bus is a widely used RPC (remote procedure call) mechanism. GDBus is
GNOME’s client and server implementation of the protocol. Like most RPC
mechanism, D-Bus works by defining the interface with a custom description
language. This description is then converted to source code with a compiler
tool. For GDBus this tool is called gdbus-codegen.

The return value is an array with the source and header targets. If the
docbook keyword argument is set to true the return value will have the docbook
target as its third element.

Positional arguments

name is a name for this compilation target.

Keyword arguments

annotation is an array of arrays where each entry defines one annotation
with three strings. Each entry has the following layout: [ELEMENT, KEY,
VALUE].

autocleanup specifies whether to generate autocleanup code, permitted values
are none, objects and all.

build_ by_ default if set to true will build the targets during a regular build.
The default is false.

docbook is a string specifying the file name prefix for generated docbook doc-
umentation. If not defined, docbook data is not generated.



20.4 GNOME

install__dir the directory where the header or bundle will be installed.

install _header if true installs the header file. Default value is false.

interface_ prefix is a string that is prepended to all interface names.

namespace is a string specifying the namespace in the generated C source,
should be in either CamelCase or Ugly_Case.

extra_ args is an array of strings that will be passed to the command line of
the source generator.

object__manager if true generates object manager classes. Default value is
false.

sources list of XML files specifying the D-Bus services.

20.4.4 generate_gir(targets, ...)
— [gir_target, typelib_target]

This method generates GObject introspection files for the given sources and
targets. This format is a machine readable description of the API and ABI,
which can be used to e.g. automatically generate bindings for many languages
such as Python. The generation is implemented by calling the g-ir-scanner
and g-ir-compiler tools provided by GLib.

Generating GIR data requires both the source and the built artefact (library
or executable). It can not be created merely by scanning source code. Intro-
spection data is split in two files: a gir file and a typelib file. Thus the return
value is an array so the outputs can be used individually.

Positional arguments

targets are build targets for which the GIR data will be generated. These are
targets built as part of the current project. They can either be a single
executable target or multiple library targets.

Keyword arguments

dependencies extra targets that must be built before introspection can be
done.

extra__args is an array of strings that will be passed to the introspection scan-
ner invocation unaltered.

export__packages a list of strings of extra package names that this GIR file
exports.

header specifies the main header needed to use this library.

identifier_ prefix specifies the prefix of this object.

include__directories an array of directories used to look up headers.

includes list of GIR file names or a gir_target used to search includes.

277



278

20 MODULE REFERENCE

install if true, the introspection files are installed.

install__dir__gir is the directory where the gir file will be installed. If unset,
defaults to share/gir-1.0.

install _dir_ typelib is the directory where the typelib file will be installed. If
unset, defaults to share/girepository-1.0.

namespace is a string specifying the namespace of this unit.

nsversion is a string specifying the namespace version.

link_ with is a list of built libraries to link against.

sources contain the source files that should be scanned for GIR data.

symbol__prefix is an array of one or more symbol prefix strings to be used in
the gir object.

20.4.5 generate_vapi(library_name, ...) — dependency

Generates a VAPI file from a GIR file. Vapi files are library description files
used by the Vala programming language.

Positional arguments

library__name is name of the generated library.

Keyword arguments

gir_ dirs is a list of directories used to look up gir files.

install if true, installs the file. Default value is false.

install__dir is the directory where the generated VAPI files will be installed.

metadata__dirs is a list of directories where extra metadata files should be
looked up in.

packages is an array of strings listing the VAPI packages this package depends
on.

sources lists the GIR sources to use. The values can be either strings or GIR
targets from generate_gir_targets.

vapi__dirs is a list of strings specifying directories to use for looking up VAPI
files.

20.4.6 genmarshal(basename, ...) — [c_source, h_sourcel

This method generates marshalling code which is needed to work with the GOb-
ject callback mechanism. The code is generated using the glib-genmarshal
tool provided by GLib.



20.4 GNOME

Positional arguments

basename is the basename used for the output files.

Keyword arguments

extra_ args is an array of strings that will be passed to the generator program
unaltered.

install__header if true, install the generated header. Defaults to false.

install__dir the directory to install the header to. If install_header is true
this argument must be defined..

nostdinc if true do not use the default marshallers. The default value is false.

internal if set to true causes the generated marshallers to be marked as inter-
nal. Default value is false.

prefix is a string specifying the prefix to add to all symbols.

skip__source , if true, tells the generator to skip source locations in generated
comments.

20.4.7 gtkdoc(module_name, ...) — none

This method generates and installs documentation with the gtkdoc tool. It can
gather documentation both by scanning source code for documentation com-
ments as well as introspecting existing libraries for GObject class data.

Positional arguments

module__name is the name of the Gtk-Doc module.

Keyword arguments

c_ args is an array of extra compiler arguments that GTK-doc should use when
compiling code.

content__files are files that need to be copied to the build tree to build the
documentation. This file layout is required by Gtk-Doc.

dependencies are targets that must be built before the documentation can be
generated. Typically includes libraries that will be introspected.

gobject__typesfile specifies which GObject types file should be used for GOb-
ject introspection.

include__directories is an array of extra directories that should be passed to
gtkdoc-scangobj.

html__assets is an array of files that should be copied to the documentation’s
asset directory.

install installs the generated documentation if true.

279



280

20 MODULE REFERENCE

install_dir is a directory where the docs should be installed. If the given path
is not absolute it is interpreted relative to share/gtk-doc/html. The
default value is the module name.

main_ sgml specifies the name of the main SGML file.

main__xml specifies the name of the main XML file. It is illegal to specify both
this and main_sgml.

module__version is a string specifying the module’s version.

src__dir has one or more include directories objects specifying where Gtk-Doc
should scan for source file comments.

In addition this method accepts the following keyword arguments that are
mapped directly to the respective Gtk-Doc tools’ command line arguments:
ignore_headers, fixxref_args, mkdb_args, namespace and scan_args

20.4.8 gtkdoc_html_dir(name) — string

When given a gtkdoc module name name returns a string specifying the path
where said module’s HTML files should be installed. This method is mostly
used to generate paths to use in install_dir keyword arguments.

20.4.9 mkenums(basename, ...) — [c_source, h_source]

This method converts a plain C enum declaration into a richer Gobject type.
This is done with the glib-mkenums program provided by GLib. Most projects
should use the mkenums_simple method instead.

This method takes two classes of keyword arguments. The first ones map
directly to keyword arguments of other generators in this module and include
install_header, install and sources. The second class maps directly to
command line arguments accepted by the compiler and include c_template,
h_template, comments, identifier_prefix, symbol_prefix, eprod, fhead,
fprod, ftail, vhead and vtail.

20.4.10 mkenums_simple(basename, ...)
— [c_source, h_source]

This is a simpler version of mkenums for projects that follow GLib’s recommended
enum layout.

Positional arguments

basename specifies the base portion of output file names.



20.5 HOTDOC

Keyword arguments

body_ prefix is a an extra string to be written at the top of the generated
source file.

decorator is a string that will be added before function declarations. This can
then be redefined with a preprocessor macro.

function_ prefix is a string that will be prepended to every function name.

header_ prefix is an extra string written at the top of the generated header
file.

identifier_ prefix is a string that will be prepended to every identifier name.

install _header if true installs the header. Defaults to false.

install__dir specifies the directory where the header gets installed.

sources is the list of sources to scan for enum declarations.

symbol__prefix is a string that will be prepended to every symbol name.

20.4.11 yelp(projectname, ...) — none

Uses GNOME’s Yelp program to install help documentation. It uses the com-
mand line tools itstool, msgmerge and msgfmt.

All keyword arguments that refer to files assume that they are in a subdirec-
tory called C in the current source directory. Meson will automatically set up
two run targets that can be used to update translations. For a project called
myproj, the target names are help-myproj-update-po and help-myproj-pot.

Positional arguments

projectname is the Yelp project ID for the current set of documentation.

Keyword arguments

languages is a list of strings defining which languages to use for translations.

media is a list of media files used in the documentation.

sources is a list of documentation source pages.

symlink__media is a boolean specifying that the media files should be sym-
linked rather than copied on install. The default value is true.

20.5 hotdoc module

HotDoc is a program for generating documentation pages from source code com-
ments.

281



282

20 MODULE REFERENCE

20.5.1 generate_doc(project_name, ...) — hotdoc object

Generates documentation for the given project. A hotdoc object is a custom
target with an extra method config_path. It returns a string pointing to the
generated configuration file.

Positional arguments

project__name is a string specifying the HotDoc project name for this docu-
mentation set.

Keyword arguments

sitemap is a string or a file pointing to the HotDoc sitemap file, which specifies
the layout of generated documentation pages.

index is a string or file pointing to the index file, that is, the “front page” of
the documentation.

dependencies is an array of targets that must be fully built before documen-
tation generation can begin.

subprojects is an array of one or more hotdoc objects that will be nested inside
this project.

In addition any argument accepted by the hotdoc program can be used as a

keyword argument by replacing dashes with underscores. For example the argu-
ment —--c-sources could be specified with the keyword argument c_sources.

20.6 i18n module

This module provides helper functionality for internationalisation and localisa-
tion of programs, such as translating application text to multiple languages.

20.6.1 gettext(name, ...) — none

Gettext is the most popular translation framework on unixlike operating sys-
tems. This method builds and installs all files needed by gettext localisations.
Positional arguments

name is the Gettext module string.



20.6 118N

Keyword arguments

args is an array of strings that will be passed to the xgettext program when
generating the translation pot file.

data__dirs is an array of strings specifying directories that the gettext program
should use to look up its files.

languages lists the languages that should be generated. This argument is dep-
recated, projects should use a LINGUAS file instead as described in Gettext
documentation.

preset selects a configuration to use. The configuration consists of command
line arguments that will be used. Currently the only supported value is
glib, which should be used for all projects using GLib.

install tells whether generated localisation files should be installed. Defaults to
true.

install__dir is the directory the localisation files should be installed to. Defaults
to the value of the option localedir.

Extra targets

This method also creates three run targets that can be executed to update trans-
lation files. The first one is <module>-pot, which rescans all source files for trans-
latable strings and adds them to the pot file. The second is <module>-update-po
which updates po files that will be handed off to translators.

Note that unlike almost every other Meson target, running these changes the
files in source directories. They are never run automatically, only when invoked
manually by the user.

The final target is <module>-gmo which builds gmo files without installing
them. They are binary files containing the translated texts that the gettext
mechanism uses at runtime.

20.6.2 merge_file(target_name, ...)
— custom target object

This method can be used to generate translated text files from a template file.
The converted file must be in one of two formats: an XML file or a .desktop
file.

This function accepts all the same keyword and positional arguments as a
custom_target. In addition it supports the following keyword arguments.

Keyword arguments

data__dirs is identical to the same keyword argument in gettext.

283



284

20 MODULE REFERENCE

po__dir is a path pointing to the directory holding the po files. By convention
this directory should be at source root and called po.
type is either xml or desktop.

Usage examples

# Localise and install a .desktop file.
i18n.merge_file(

input: 'test.desktop.in',

output: 'test.desktop',

type: 'desktop',

po_dir: '../po',

install: true,

install_dir: get_option('datadir') / 'applications'

20.7 pkgconfig module

This module can be used to automatically generate pkg-config files on install.
This makes it easy for other projects to use your code. Meson’s dependency
method primarily looks up dependencies with pkg-config files as do many other
build systems. Pkg-config files are installed in the system’s pkg-config direc-
tory, which on most systems is /usr/1lib/pkgconfig. In Meson terms this is
equivalent to get_option(’libdir’) / ’pkgconfig’.

A pkgconfig dependency typically defines some header include directories,
libraries to link against and, less often, explicit compiler and linker arguments
to use.

Pkg-config files also contain dependency information. This is needed if you,
for example, want to link the dependency statically rather than dynamically,
which is the default. The pkgconfig file generator will automatically add this
dependency information. Defining which dependencies are added and how is
quite complicated and, at the time of writing, not fully specified yet. It is
likely that details of it have changed by the time you read this. If problems
appear, the reader is suggested to look up the full specification on Meson’s
online documentation.

20.7.1 generate(...) — pkgconfig object

Creates and installs a pkg-config file as specified by the keyword arguments.



20.8 PYTHON

Keyword arguments

d__module_ versions is a list of module version flags to use when compiling
D language source files that use this dependency.

description is a short human readable text snippet describing the library.

extra__cflags is an array of strings of compiler flags that should be used with
this library.

filebase is the name of the file to be generated without the .pc suffix. This will
also be this dependency’s Pkg-config module name.

install__dir is the directory to install the pc file to. Default value is determined
as described above.

libraries is an array of library build targets that belong to this dependency.
The values can contain plain strings too, they are assumed to define other
libraries and will be put in the pc file’s library list. The most common
value is -1m that links against the C language’s standard math library.

libraries_ private is the same as 1libraries but the libraries are only used if
the dependency is linked statically.

name is the human readable name of this library as reported by Pkg-config.
Note that this is not the name you’d use to query dependency information.
That is called the module name and is defined by the keyword argument
filebase.

subdirs is a list of strings defining subdirectories of the global include directory
that should be added to the header search path.

requires is an array of strings, dependencies or pkgonfig objects. These will be
listed as dependencies of the current dependency.

requires__private is the same as requires but the dependency is marked as
private.

url is a string with an URL pointing to the project’s web site.

variables are an array of strings in the format key=value. These entries will
be written as queryable variables in the pc file.

version is a string specifying the version number of this dependency. The
default value is the current project version.

20.8 python module

The Python module makes it easy to build and install Python extension modules
written in native code. The most common language is C but any language that
can provide the same ABI can be used.

This module supports Python versions 2 and 3 with an identical interface.

285



286

20 MODULE REFERENCE

20.8.1 find installation(name, ...)
— installation object

There are many different ways to install Python. This method introspects the
system and tries to find the desired Python installation. The return object is
documented in Section 18.13.

The name argument specifies how the installation should be looked up. If its
value is python3 or python2, Meson will try to find an installation of Python
3 or 2, respectively. There are no other requirements, any installation with the
given major version is acceptable. If the argument is an absolute path to an
executable, it is used as the installation. Finally if the argument is a plain name
such as python3.6, it will be looked up internally with find_program.

Keyword arguments

required if set to true (the default) then failing to find the installation is a
hard error.

disabler is a boolean. If set to true then failing to find the installation returns
a disabler object instead. The default is false.

20.9 qtb5 module

Qt is a popular C++ framework for creating GUI applications, though it can
also be used for command line programs. It has some special requirements for
build systems, because some input source files must be preprocessed with code
generator tools before they can be compiled. This module aims to provide a
simple user interface to the underlying functionality.

20.9.1 preprocess(...) — source object

There are three different code generator tools in Qt: moc for source code, uic
for user interface files and rcc for general resources. This method processes all
three types. The recommended way to use this method is to process all files of
a single build target in one invocation of this method.

The return value is an opaque object. It should be passed to the build target
definition in the list of sources.

Keyword arguments

moc__headers is a list of header files that need to be processed with moc (usu-
ally because they define Q_0BJECTS.)
moc__sources is a list of source files that need to be processed with moc.



20.10 QT4

moc__extra__arguments is a list of strings that will be used when invoking
moc.

qresources is a list of resource files that need to be processed with rcc.

rcc__extra__arguments is a list of strings that will be used when invoking
rcc.

uic__extra_ arguments is a list of strings that will be used when invoking uic.

ui_ files is a list of user interface description files that need to be processed
with uic.

20.9.2 compile_translations(...) — none

This method is used to compile and install program translations with Qt’s in-
ternationalisation tool lrelease.

Keyword arguments

ts__files is a list of files. These files are generated with Qt’s lupdate tool that
scans source files for strings to translate.

install is a boolean specifying whether the generated files should be installed.

install__dir is the directory to install the files to.

build__by_ default is a boolean specifying whether the targets should be built
by the default build command. Defaults to false, meaning the translated
files are only generated on install.

20.10 qt4 module

The gqt4 module provides the same functionality as the qt5 module, but for Qt
version 4. All methods are identical in both modules.

20.11 rpm module

The RPM module provides an easy way to create a template spec file that is
used for creating RPM packages. The module is used by adding this line in some
build file:

import ('rpm') .generate_spec_template()

When Meson is configured it will write the template file in the build dir.
This can be copied out and used. The line added above should be deleted as it
is no longer required.

287



288

20 MODULE REFERENCE

20.12 sourceset module

This module provides helper functionality for defining files and dependencies
based on detected features and user configuration.

20.12.1 source_set() — source_set object

Creates a new source set object. All actual functionality of this module is ac-
cessed through these objects. They are fully described in Section 18.16.

20.13 windows module

This module provides helper functionality for building applications that run on
the Windows operating system.

20.13.1 compile_resources(rc_files, ...) — object

In Windows many parts of an application, such as menus, icons and so on, are
defined as resources in files that must be processed with a specific tool and
compiled in the application.

The return value is an opaque object that should be put in the source list of
a build target.

Positional arguments

rc__files are one or more resource files to compile.

Keyword arguments

args is an array of strings to pass as arguments to the resource compiler.

depend_ files is a list of files the resource depends on. Changing any of these
files causes the resource to be rebuilt. The resource compiler does not
provide dependency information so this list of files can not be obtained
automatically.

depends is a list of targets that this build depends on, even though it does not
take them as command line arguments. Used when some of the resource
files are generated with e.g. custom_target.

include__directories is a list of directories that should be used to look up
resource files.



Part Ill:

The appendixes






Appendix A
Contributing to Meson

The Meson build system is not set in stone. By the time you read this book,
it will have added new features that are not discussed in this book. Some of
these features are created by the core Meson development team, but most are
contributed by regular users of the program. As the health of any open source
project depends on the number of contributions it gets, the Meson projects loves
contributions and want to encourage as many people as possible to participate
in its development. Not only is contributing fun and educational, it is also the
most certain way of getting your own special feature in the system.

In this chapter we will give a rough outline on how to prepare, submit and
polish your contribution and hopefully eventually get it merged in Meson. This
process is not exclusive to Meson, most open source projects have a similar (and
often times identical) process for contributions. Thus you can use this as a
general guideline on how to contribute to open source projects, but do note that
some projects may have unique requirements and processes so always check the
correct procedure before contributing to a project.

In case you run into any problems in your code submission, you should seek
assistance from the Meson development IRC channel where most of the develop-
ers hang out. Instructions on how to use IRC can be found with your favourite
Internet search engine. The channel is called #mesonbuild and it is hosted on
the Freenode network.

A.1 Checking out the code

The first thing you need to do is to get an up to date copy of Meson’s Git
repository. The development happens in Github, so you need to create a Github
account. You also need to set up SSH key access, the details on that can be found
in Github’s documentation. Actual development is done using the Git version



202

A CONTRIBUTING TO MESON

control system. It is not a particularly intuitive or user friendly application, so
getting started may be a bit intimidating.

First you need to create your own copy of the repository on your own Github
account. In Github terminology this is called a fork. To create one, go to the
Meson project page at https://github.com/mesonbuild/meson and look for a
button at the top right corner that says “fork” and click it.

This should create a new copy and forward you to your own version of the
code. Now you need to create your local copy of the repository so you can work
on it. This is called a clone. Look for a green button that says Clone or download
and click on it. It should open a text frame with a clone URL that should look
like this:

git@github.com:<your_username>/meson.git

If the address instead starts with https://, click on the button that says
Use SSH. The URL should change to the form listed above. If it does not, you
need to set up SSH keys as mentioned earlier.

Next you need to open a command prompt. Change to a directory you want
to check the code out in and issue the following command.

$ git clone git@github.com:<your_username>/meson.git

Once the command finishes you have your own copy of the repository, go
inside the meson directory and run the following command:

$ git remote add upstream https://github.com/mesonbuild/meson.git

This tells Git that we want to track the original repository under the name
upstream. This functionality will not be needed until much later in the process
but it’s good practice to set it up immediately.

Meson development is heavily based on tests, so let’s run them all to verify
that they pass.

$ ./run_tests.py

If you are on Windows you might need to manually use the Python command
instead.

$ python run_tests.py

If any tests fail, it is probably because you are missing some build dependen-
cies. Install them and rerun the tests until all tests pass. Do not skip this step!
You can not know if your change works unless you can make all tests pass.


https://github.com/mesonbuild/meson

A.2 CREATING THE MERGE REQUEST

A.2 Creating the merge request

Now you need to implement the change. There are three main types of changes:
documentation changes, bug fixes and new features. The Meson project has a
requirement that changes in the code must come with tests. Bug fixes require
regression tests to ensure that the bug is never inadvertently reintroduced. Fea-
tures need tests to prove that they work as expected. Lack of tests is a sufficient
reason to reject any code submission regardless of everything else.

For simplicity we are going to assume that the change consists of only one
commit. Once the change has been written and tested, you can create a commit
with your changes.

$ git commit -a -m 'Commit message here.'

If your commit fixes a bug in Meson’s bug tracker you should add it to the
commit message:

$ git commit -a -m 'Commit message here. Closes #1234.'

This causes the system to close the bug automatically when this commit is
merged to Meson’s master repository. Documentation only changes should look
like this instead:

$ git commit -a -m 'Commit message here. [skip ci]'

In order to create a merge request the commit needs to be pushed to your
Github account. By default Git pushes changes to that repository, so this is just
a question of running:

$ git push

Then you can open your web browser and go to your repository’s page and
click the New pull request button. Github will show you the changes that will
be in your pull request. If everything is ok, push the green Create pull request
button.

You will get a page that allows you to write a message explaining your change.
It is not needed for simple changes, but for complex changes you might want to
write a few words. When done you can press this page’s the Create pull request
button.

293



294

A CONTRIBUTING TO MESON

A.3 Review and continuous integration

Meson has an extensive continuous integration system that runs the full test suite
on multiple platforms and with many different toolchains. It is not uncommon
for a pull request to work fine on the submitter’s machine but fail when run on
CI. If this happens then it is the submitter’s responsibility to fix all test failures.
Members of the development team will provide assistance as mentioned in the
beginning of the chapter, but the final responsibility rests on the submitter as
pull requests with failing tests will not be merged.

In addition to test failures you will most likely be faced with review com-
ments from Meson developers. They range from pointing out typos to requesting
major architectural changes to the commit. These commits are in no way meant
to be personal but are done to ensure the reliability and especially long term
maintainability of the project. The goal of the review process is to make the
code submission itself better.

Regardless of whether you hit test failures or review comments you need to
update your pull request. Once the code has been edited and working, the pull
request can be updated. First you update the local commit.

$ git commit -a --amend

This tells Git not to create a new commit but instead add the current changes
in the previous commit. Then we need to update the version on your Github

page.

$ git push --force

The --force argument is needed because we change existing commits rather
than add new ones. This will overwrite the remote repository, so you should be
careful when force pushing.

After the push Github’s automatic mechanisms take over, update the pull
request with the new commit and re-run CI on the system. If all tests pass and
maintainers are happy, the pull request will be merged. If not, there will be a
new round of reviews and updates until the change is either merged or rejected.

A.4 Fixing merge conflicts

While a pull request is in review, other pull requests get merged to master. If
a change that was merged changes the same lines of code as your pull request
it creates a merge conflict. A pull request with a conflict can not be merged,



A.5 DOCUMENTATION UPDATES

because there is no automatic way of reconciling these changes. This must be
fixed manually by the pull request submitter.

There are two different ways of resolving these conflicts, merging and rebas-
ing. Meson, like most open source projects, only uses rebasing, because it leads
to a cleaner commit history.

First you need to get the latest upstream changes to your local copy. This
can be achieved with the upstream setup listed earlier.

$ git fetch upstream

Then we tell Git to move our commit on top of the new master repository.

$ git rebase upstream/master

Git will try to apply your commits, fail and exit with an error message listing
which files have conflicts. You need fix all the problems either by manual editing
or with a dedicated diff tool. After you have fixed all the issues, run the full test
suite to ensure you have not broken anything by accident.

Rebasing is finished by adding all files that had conflicts:

$ git add filel.py file2.py

and then telling Git to finish the operation:

$ git rebase --continue

The updated result can now be pushed to Github just like in the previous
chapter:

$ git push --force

The pull request is updated and CI run automatically.

A.5 Documentation updates

All of Meson’s documentation, including the entire https://mesonbuild.com
web site is stored in the same repository as the source code. Commits that add
new functionality (as opposed to just fixing bugs) must update all documentation
at the same time. Just like with missing unit tests, missing documentation is
reason enough to reject any contribution.

295


https://mesonbuild.com

206

A CONTRIBUTING TO MESON

There are three separate classes of documentation. These are the user man-
ual, the reference documentation and release notes. The manual is written in
plain English and explains the concepts and basic usage of each feature. The
reference documentation on the other hand explains features in detail, but is
written in a terse style. Release notes are short pieces of text describing new
features added in Meson since the last major release.

All documentation can be found in the docs subdirectory. They are written
in Markdown format and are processed to create the final documentation using
the HotDoc [6] document generation program. Thus the reader is assumed to
be familiar with Markdown syntax. There are many good tutorials available on
the Internet.

Reference documentation changes are the most common. These include
adding new functions, keyword arguments to existing functions and so on. The
actual change is done by finding the suitable location in the reference documen-
tation page and adding your changes. Changing the manual needs to be done
less often, but it does take more work. Usually you need to write some text
explaining the new feature and an example of how you would use it in a project.

Changes in these documentation pages get updated on the web site fairly
quickly, sometimes on the same day as they are merged. Thus the documentation
may refer to features that are not yet in any released version. Because of this all
new features must declare which versions of Meson they are available in. This
is done by a piece of text saying This feature is available since version X, where
X is the next major release of Meson.

Release notes follow a slightly different pattern. They are stored in stan-
dalone files that do not show up on the web site. When a release is published,
the web site is updated with a release note page for the new release that con-
tains all the individual files. These are are called snippets and they are stored in
docs/markdown/snippets subdirectory. The files must conform to the following
format:

## Headline describing the feature

A paragraph or few of text describing the new feature and how it
can and should be used. Sample code should be written in this
special format:

" “meson
variable = new_awesome_function()



1]

Bibliography

Bob Amstadt, Eric Youngdale, and Alexandre Julliard. Wine. https:
//www.winehq.org/.

Fabrice Bellard. The QEMU emulator. https://www.qemu.org/.

Andy Cedilnik, Bill Hoffman, Brad King, Ken Martin, and Alexander Ne-
undorf. The CMake build system. https://cmake.org/, 2000.

John Donne. Devotions Upon Emergent Occasions. 1624.

Ulrich Drepper. How to write shared libraries. https://akkadia.org/
drepper/dsohowto.pdf, December 2011.

Mathieu Duponchelle. The HotDoc API documentation system. https:
//hotdoc.github.io/.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison—Wesley,
1994.

James Henstridge. Pkg-config. https://wuw.freedesktop.org/wiki/
Software/pkg-config/, 2000.

Charles Antony Richard Hoare. Unification of theories: A challenge for
computing science. In Selected papers from the 11th Workshop on Specifi-
cation of Abstract Data Types Joint with the 8th COMPASS Workshop on
Recent Trends in Data Type Specification, pages 49-57. Springer—Verlag,
1996.

Michael Kerrisk. The Linux programming interface. No Starch Press,; 2010.

Helmut Kopka and Patrick W. Daly. A Guide to B'TEX 22, Document Prepa-
ration for Beginners and Advanced Users. Addison—Wesley Publishers 1td.,
second edition, 1995.


https://www.winehq.org/
https://www.winehq.org/
https://www.qemu.org/
https://cmake.org/
https://akkadia.org/drepper/dsohowto.pdf
https://akkadia.org/drepper/dsohowto.pdf
https://hotdoc.github.io/
https://hotdoc.github.io/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/

208

BIBLIOGRAPHY

Alexander Larsson. The Flatpak packaging system. http://flatpak.org/,
2015.

Evan Martin. The Ninja build system. https://ninja-build.org/, 2012.
Microsoft. Visual Studio. https://visualstudio.microsoft.com/.

Haavard Nord and Eirik Chambe-Eng. The Qt development framework.
https://www.qt.io/, 1995.

Julian Seward. The Valgrind program analysis framework. http://
valgrind.org/.

Richard Stallman. The GNU debugger. https://www.gnu.org/software/
gdb/, 1986.

Tool Interface Standard. Executable and linking format (ELF) specification
version 1.2, 1995.

Wikipedia contributors. Turing completeness — Wikipedia, the free
encyclopedia. https://en.wikipedia.org/w/index.php?title=Turing_
completeness, 2018.


http://flatpak.org/
https://ninja-build.org/
https://visualstudio.microsoft.com/
https://www.qt.io/
http://valgrind.org/
http://valgrind.org/
https://www.gnu.org/software/gdb/
https://www.gnu.org/software/gdb/
https://en.wikipedia.org/w/index.php?title=Turing_completeness
https://en.wikipedia.org/w/index.php?title=Turing_completeness

Index

<3, 38 BAT files, 26
7:, see ternary operator benchmark (), 234
$0, 141 benchmarks, 97
boolean object, 29, 185
abstract machine, 23 to_int (), 185
accessing resources, 108 to_string(), 186
add_global_arguments(), 229 Boost, 58
add_global_link_arguments(), 230  both_libraries(), 235
add_languages (), 231 build machine, 132
add_project_arguments (), 232 build options, 111
add_project_link_arguments(), 232 build phases, 31
add_test_setup(), 232 build_machine object, 195
address layout randomisation, 20 cpu(), 196
alias_target (), 233 cpu_family (), 195
API design, 160 endian(), 197
Apple frameworks, 60 system(), 196
application bundle, 101 build_target (), 235
Arduino, 133 build_target object, 197
arguments extract_all_o...(Q), 197
keyword, 35, 36 extract_objects(), 197
positional, 35 full_path(), 198
arithmetic, 28 name (), 198
array object, 183 private_dir_i...(), 198
contains(), 184
get(), 185 Canadian Cross, 132
length(), 185 cargo cult, 18
ASLR, see address layout randomisa- circular dependencies, 18, 26, 45
tion CMake, 59, 269
assert (), 234 cmake module, 269
asset pipeline, 49, 119 configure_pack...(), 270

write_basic_p...(Q), 269
bare metal, 133, 137 COBOL, 25



300

INDEX

command argument strings, 122

compile time, 9

compiler flags, 73

compiler object, 198
alignment (), 198
check_header (), 199
command_array (), 199
compiles(), 199
compute_int (), 200
find_library(), 200
first_supporte... (), 202
first_supporte... (), 202
get_id (), 201
get_linker_id(), 202
get_supported... (), 202
has_argument (), 202
has_function(), 203
has_function_...(), 203
has_header (), 203
has_header_sy...(), 203
has_link_argu...(), 204
has_member (), 204
has_members (), 205
has_multi_arg...(), 205
has_multi_lin...(), 205
has_type (), 205
links (), 205
run(), 206
sizeof (), 206
symbols_have_... (), 206
version(), 207

configurability, 71

configuration data object, 207
get ), 207
get_unquoted(), 208
has (), 208
merge_from(), 209
set (), 209
set10Q), 210
set_quoted(), 210

configuration header, 74

configuration_data(), 75, 238
configure_file(), 75, 238
continuous integration, 87, 294
CPU, 137
CPU family, 137
cross compilation, 131
of a cross compiler, 134
cross file, 135, 179
Cups, 60
custom_command (), 119
custom_target (), 240
custom_target object, 211
full_path(), 211
to_list(), 211
Cygwin, 196

D-Bus, 276
declare_dependency(), 66, 242
dependency, 55

backend, 58

circular, see circular dependencies

executable, 60
overriding, 67
fallback, 67
internal, 66
manual lookup, 61
modules, 57
native, 142
vendoring, 145
via a Wrap, 146
dependency (), 56, 58, 244
dependency file, 121, 239
dependency object, 211
as_system(), 211
found (), 212
get_pkgconfig...(), 212
get_variable(), 212
is_system(), 212
name (), 212
partial_depend... (), 213
type_name (), 213
version(), 213



INDEX

DESTDIR, 105

dictionary object, 30, 186
get (), 187
has_key (), 186

disabler, 42

disabler (), 245

disabler object, 187
found(), 188

dlang module, 271
generate_dub_...(), 271

DLL, 102

Doxygen, 56

Ducky library, 159

edit—compile—test cycle, 31
Einstein, Albert, 25
ELF, 21, 108
ELF interpreter, 17
endianness, 137
environment (), 246
environment object, 214
append (), 214
prepend (), 215
set(), 215
environment variables, 5, 60, 89, 106,
214
error(), 247
event driven 10, 80
exe wrapper, 95, 140, 233
executable(), 36, 246
external_library object, 215
external_program object, 215
found (), 215
path(), 215

files(), 248
find_program(), 60, 68, 247
firmware, 55

flashing, 143
Flatpak, 101
foreach, 40, 82
fs (filesystem) module, 271

exists(), 272
hash(), 272
is_dir(), 272
is_file(), 272
is_samepath(), 273
is_symlink(), 273
name (), 273
parent (), 273
replace_suffix(), 274
size(), 274
functional programming, 26
functions, 35

generator (), 127, 249

generator object, 215
process(), 216

generators, 127
extra arguments, 129
file layout, 120
when cross compiling, 141

get_option(), 250

get_variable(), 250

Git, 146, 291
force pushing, 294
Github, 291
rebasing, 295

global offset table, 21

gnome module, 274
compile_resources(), 274
compile_schemas(), 276
gdbus_codegen(), 276
generate_gir (), 277
generate_vapi(), 278
genmarshal (), 278
gtkdoc (), 279
gtkdoc_html_dir(), 280
mkenums (), 280
mkenums_simple(), 280
yelp(), 281

GNU Autotools, 154

GNU debugger, 96

GNU triplet, 134

301



302

INDEX

Golgafrincham proverbs, 169
GPG, 171
Gtk-Doc, 56

halting problem, 32

header platform detection, 72

header search directories, 51

Hello, world, 6

host machine, 132

host_machine object, 216

hotdoc module, 281
generate_doc (), 282

i18n module, 282
gettext (), 282
merge_file(), 283

IDL, 48

if clause, 38

immutability, 25, 32, 41

import (), 251, 269

include_directories(), 251

incremental builds, 32

install_data(), 103, 252

install_headers(), 253

install_man(), 254

install_subdir (), 103, 255

integer object, 28, 188
is_even(), 188
is_odd (), 188

IRC, 291

is_disabler(), 256

is_variable(), 257

jar(), 257
Java, 257
join_paths(), 258

keyword arguments, see arguments, key-

word
kwargs, see arguments, keyword

language runtime library, 12, 17
LD_LIBRARY PATH, 16

library(), 258
linker, 10
dynamic, 11, 16
GNU bfd, 19
14, 11
path lookup, 15
shared, 15
static, 10, 14
linker script, 237
LLVM, 19
loader, 21
Lua, 246
LZMA, 169

Make, 24, 154, 155

make
recursive, 152

Man pages, 103, 254

man pages, 174

Markdown, 296

math library, 62, 201

merge conflicts, 294

merge requests, 293

Meson language, 23

meson object, 217
add_dist_script(), 217
add_install_s...(Q), 217
add_postconf_... (), 217
backend (), 217
build_root(), 218
can_run_host... (), 218
current_build... (), 218
current_source...(), 218
get_compiler(), 218
get_cross_pro...(Q), 219
get_external_...(Q), 220
has_exe_wrapper (), 220
install_depend... (), 220
is_cross_build(), 220
is_unity (), 220
override_depen... (), 221
override_find... (), 221



INDEX

project_licenses(), 222
project_name(), 222
project_version(), 222
source_root (), 222
version(), 222

message (), 35, 258
MinGW, 131
monorepo, 145
MSTI packages, 5

native files, 139
native target, 142
Ninja, 7
nondeterminism, 126
not a number, 42
null type, 31

object

domain specific, 195

objects, 41

elementary, 183

opaque types, 161
OpenGL, 60
option(), 112, 229
option types, 112-114
options

base, 116
core, 115
directory, 116
feature, 113
language, 116
listing, 114
project, 116
setting, 114
yielding, 117

package manager, 3, 100
path joining, 27, 189
Pkg-config, 58, 213

generating, 169

pkgconfig module, 284

generate (), 284

platform bootstrapping, 131

poetry, 55

position independent code, 16

positional arguments, see arguments,

positional

precompiled headers, 163, 236

preprocessor, 53

procedure linkage table, 21

project releases, 169

PyPi, 178, see Python, Package Index

Python, 4, 26, 61
extension modules, 177, 285
Package Index, 178
Pip, 4

python module, 285
find_installation(), 286

python_installation object, 222
dependency (), 223
extension_module(), 223
get_install_dir(), 223
get_path(), 223
get_variable(), 224
has_path(), 224
has_variable(), 224
install_sources(), 223
language_version(), 223

QEMU, 140

QMake, 59

Qt, 57

qt4 module, 287

qt5 module, 286
compile_transl...(), 287
preprocess(), 286

quoting, 26, 208

race condition, 126
Raspberry Pi, 133
reinterpret_cast, 164
relocation record, 20
resource bundling, 123
Gnome, 274

303



304

INDEX

Qt, 287
Windows, 288
return code, 90, 92, 224
rpath, 108
rpm module, 287
run time, 9
run_command (), 259
run_result object, 224
compiled(), 224
returncode(), 224
stderr (), 224
stdout (), 225
run_target (), 259

SDL, 60

set_variable(), 260

shared library versioning, 261

shared_library(), 260

shared_module(), 261

SIMD, 90

soname, 21

source code generation, 48, 68, 123

source_configuration object, 225
dependencies(), 225
sources (), 225

source_set object, 225
add (), 225
add_all(), 226
all_dependencies(), 226
all_sources(), 226
apply ), 226

sourceset module, 288
source_set (), 288

stable ABI, 159

static linker, see linker, static

static_library(), 262

string object, 27, 189
contains(), 190
endswith(), 190
format (), 28, 190
join(), 191
split (), 191

startswith(), 192

strip(), 192

to_int (), 192

to_lower (), 193

to_upper(), 193

underscorify (), 193

version_compare(), 194
strings

concatenating, 27

file names as, 189
subdir (), 33, 262
subdir_done(), 263
subdirectories, 33, 50
subproject (), 64, 263
subproject object, 228

found (), 228

get_variable(), 65, 228
subprojects, 63

obtaining via wraps, 146
summary (), 264
symbol name mangling, 207
symbol resolution, 12, 16
symbol visibility, 161, 236

system introspection, 61, 78, 116

target machine, 132
target properties, 52
target_machine object, 228
ternary operator, 39

test

setup, 96
test (), 88, 265
tests

arguments, 88
environment variables, 89
exe wrapper, 95

failing, 92

parallelism, 91

skipping, 87, 90

suite, 86, 94

timeout, 87, 90, 95

tool, 93



INDEX

texture atlas, 121

threads, 62

translation targets, 283
Turing completeness, 25, 41

undecidability, 32
undefined behaviour, 64, 165
Unix file system hierarchy, 99
Unix shell, 26, 45

Vala, 278
Valgrind, 95, 233
suppressions, 96
variables, 24
scope, 51
ves_tag(), 267
visibility attributes, 162
Visual Studio, 7, 161

windows module, 288
compile_resources(), 288
Wine, 140
Wrap, 146
command line tool, 148
WrapDB, 148

XDG_DATA_DIRS, 137
XDG_DATA_HOME, 137
XML, 157

Zlib, 56, 147, 169

305



	Preface
	Conventions used in this book
	I The user manual
	Getting started
	Obtaining Meson
	Creating the sample project
	Building from the command line
	Building with the Visual Studio IDE

	How compilation works
	Basic term definitions
	Building the Hello World application manually
	Basic symbol resolution
	Static linking
	Shared linking
	Linking multiple libraries
	Which is better, shared or static linking?
	Dynamic linker and symbol resolution

	Meson syntax
	Original design principles
	Concrete design decisions
	Elementary types
	Build system phases
	Program flow
	Object types
	Disablers

	Building blocks of a software project
	The elementary operations
	Advanced build cases
	Generating data
	Defining the graph in Meson
	Splitting the project to multiple directories
	Target properties

	External dependencies
	What is a dependency?
	Finding and using dependencies
	Dependency provider backends
	Executable dependencies
	Dependencies that don't provide any dependency files

	Subprojects and internal dependencies
	Subproject basics and layout
	Using subprojects
	Internal dependencies
	Combining subprojects and internal dependencies
	Overriding executable lookup

	Configuring the project
	Simple approaches to configuration
	Configuration files
	Advanced configuration options
	Introspecting the system
	Printing status messages

	Testing
	Defining a test
	Test properties
	Advanced testing using the test tool
	Defining custom test setups
	Benchmarks

	Installing
	Directory layout
	Installing build targets
	Installing other files
	Running the install
	Custom install tasks
	Other things that happen during install
	Accessing data files before and after install

	Project options
	Builtin options
	Declaring and using project options
	Defining options
	Exploring and setting option values
	Sharing options between projects

	Custom build steps
	Generating data files
	Dependency files
	Special strings in command arguments
	Generating source code
	Generating source and headers
	Using generators

	Cross compilation
	A word about nomenclature
	A practical example
	Other naming setups
	Cross compilation with Meson
	Cross file lookup
	Multiple cross files
	Constants in cross files
	Native files
	Running tests when cross compiling
	Cross compilation and code generators
	Firmware upload targets

	The Wrap dependency download mechanism
	The basic design
	Downloading revision control checkouts
	Downloading a release archive
	Using the WrapDB

	Converting an existing project to Meson
	Why change build systems? Is it even worth it?
	Making sense of an existing build system
	Build tasks ordered by difficulty
	Conversions involving an entire team

	A library sample project
	Design requirements
	The external API
	Precompiled headers
	The C <-> C++ bridge
	Tests
	Project layout
	Creating releases
	Exercises for the reader

	Practical tips for real world projects
	Use options rather than hardcoding compiler flags
	Shipping pregenerated files
	Do not treat files as strings
	Running Python scripts that use extension modules
	Move everything you can out of build files


	II The reference documentation
	Elementary object reference
	array
	boolean
	dictionary
	disabler
	integer
	string

	Domain specific object reference
	build_machine
	build_target
	compiler
	configuration data
	custom_target
	dependency
	environment
	external_library
	external_program
	generator
	host_machine
	meson
	python_installation
	run_result
	source_configuration
	source_set
	target_machine
	subproject

	Function reference
	add_global_arguments
	add_global_link_arguments
	add_languages
	add_project_arguments
	add_project_link_arguments
	add_test_setup
	alias_target
	assert
	benchmark
	both_libraries
	build_target
	configuration_data
	configure_file
	custom_target
	declare_dependency
	dependency
	disabler
	environment
	executable
	error
	find_program
	files
	generator
	get_option
	get_variable
	import
	include_directories
	install_data
	install_headers
	install_man
	install_subdir
	is_disabler
	is_variable
	jar
	join_paths
	library
	message
	run_command
	run_target
	set_variable
	shared_library
	shared_module
	static_library
	subdir
	subdir_done
	subproject
	summary
	test
	vcs_tag

	Module reference
	cmake
	dlang
	fs (filesystem)
	gnome
	hotdoc
	i18n
	pkgconfig
	python
	qt5
	qt4
	rpm
	sourceset
	windows


	III The appendixes
	Contributing to Meson
	Checking out the code
	Creating the merge request
	Review and continuous integration
	Fixing merge conflicts
	Documentation updates


	Bibliography
	Index

